• Dimenstein IB. Grossing biopsies: an introduction to general principles and techniques. Ann Diagn Pathol. 2009;13:106–13.

    PubMed 
    Article 

    Google Scholar
     

  • Wang CC, Huang KT, Chang HC, Tseng CC, Lai CH, Lan J, et al. Comprehensive analysis of PD-L1 in non-small cell lung cancer with emphasis on survival benefit, impact of driver mutation and histological types, and archival tissue. Thorac Cancer. 2021.

  • Zarogoulidis P, Gaga M, Huang H, Darwiche K, Rapti A, Hohenforst-Schmidt W. Tissue is the issue and tissue competition. Re-biopsy for mutation T790: where and why? Clin Transl Med. 2017;6(6).

  • Hofman P. The challenges of evaluating predictive biomarkers using small biopsy tissue samples and liquid biopsies from non-small cell lung cancer patients. J Thorac Dis. 2019;11:S57–64.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rodriguez J, Avila J, Rolfo C, Ruiz-Patino A, Russo A, Ricaurte L, et al. When tissue is an issue the liquid biopsy is nonissue: a review. Oncol Ther. 2021;9:89–110.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vendramin R, Litchfield K, Swanton C. Cancer evolution: Darwin and beyond. EMBO J. 2021;40:e108389.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kwak EL, Ahronian LG, Siravegna G, Mussolin B, Borger DR, Godfrey JT, et al. Molecular heterogeneity and receptor Coamplification drive resistance to targeted therapy in MET-amplified Esophagogastric Cancer. Cancer Discov. 2015;5:1271–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tan P, Grundy L, Makary P, Eng KH, Ramsay G, Bekheit M. The value of liquid biopsy in the diagnosis and staging of hepatocellular carcinoma: a systematic review. Transl Gastroenterol Hepatol. 2021;6:54.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang M, Jin S, Han J, Li T, Shi J, Zhong Q, et al. Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomark Res. 2021;9:85.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mattox AK, Bettegowda C, Zhou S, Papadopoulos N, Kinzler KW, Vogelstein B. Applications of liquid biopsies for cancer. Sci Transl Med. 2019:11.

  • Hanna TP, King WD, Thibodeau S, Jalink M, Paulin GA, Harvey-Jones E, et al. Mortality due to cancer treatment delay: systematic review and meta-analysis. BMJ. 2020;371:m4087.

    PubMed 
    Article 

    Google Scholar
     

  • Hamza B, Miller AB, Meier L, Stockslager M, Ng SR, King EM, et al. Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Nat Commun. 2021;12:5680.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Freitas C, Sousa C, Machado F, Serino M, Santos V, Cruz-Martins N, et al. The role of liquid biopsy in early diagnosis of lung Cancer. Front Oncol. 2021;11:634316.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harangus A, Berindan-Neagoe I, Todea DA, Simon I, Simon M. Noncoding RNAs and liquid biopsy in lung Cancer. A Literature Review Diagnostics (Basel). 2019;9.

  • Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. Nano Converg. 2021;8:13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Derman BA, Stefka AT, Jiang K, McIver A, Kubicki T, Jasielec JK, et al. Measurable residual disease assessed by mass spectrometry in peripheral blood in multiple myeloma in a phase II trial of carfilzomib, lenalidomide, dexamethasone and autologous stem cell transplantation. Blood Cancer J. 2021;11:19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2021;124:13–26.

    PubMed 
    Article 

    Google Scholar
     

  • Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Corrigendum: phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2018;554:264.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morgan AJ, Giannoudis A, Palmieri C. The genomic landscape of breast cancer brain metastases: a systematic review. Lancet Oncol. 2021;22:e7–e17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reiter JG, Baretti M, Gerold JM, Makohon-Moore AP, Daud A, Iacobuzio-Donahue CA, et al. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer. 2019;19:639–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miarka L, Valiente M. Animal models of brain metastasis. Neurooncol Adv. 2021;3:v144–56.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, et al. Brain metastasis cell lines panel: a public resource of Organotropic cell lines. Cancer Res. 2020;80:4314–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Z, Wang Y, Kabraji S, Xie S, Pan P, Liu Z, et al. Improving orthotopic mouse models of patient-derived breast cancer brain metastases by a modified intracarotid injection method. Sci Rep. 2019;9:622.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang C, Lowery FJ, Yu D. Intracarotid Cancer cell injection to produce mouse models of brain metastasis. J Vis Exp. 2017.

  • Xing F, Liu Y, Sharma S, Wu K, Chan MD, Lo HW, et al. Activation of the c-met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast Cancer. Cancer Res. 2016;76:4970–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gautam SK, Kanchan RK, Siddiqui JA, Maurya SK, Rauth S, Perumal N, et al. Blocking c-MET/ERBB1 Axis prevents brain metastasis in ERBB2+ breast Cancer. Cancers (Basel). 2020;12.

  • Oliver CR, Westerhof TM, Castro MG, Merajver SD. Quantifying the brain metastatic tumor Micro-environment using an organ-on-a Chip 3D model, Machine Learning, and Confocal Tomography. J Vis Exp. 2020.

  • Kwapisz D. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med. 2017;5(46).

  • Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369.

  • Woo D, Yu M. Circulating tumor cells as “liquid biopsies” to understand cancer metastasis. Transl Res. 2018;201:128–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boral D, Vishnoi M, Liu HN, Yin W, Sprouse ML, Scamardo A, et al. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun. 2017;8:196.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Aljohani HM, Aittaleb M, Furgason JM, Amaya P, Deeb A, Chalmers JJ, et al. Genetic mutations associated with lung cancer metastasis to the brain. Mutagenesis. 2018;33:137–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klotz R, Thomas A, Teng T, Han SM, Iriondo O, Li L, et al. Circulating tumor cells exhibit metastatic tropism and reveal brain metastasis drivers. Cancer Discov. 2020;10:86–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med. 2013;5:180ra148.

  • Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, et al. YTHDF3 induces the translation of m (6) A-enriched gene transcripts to promote breast Cancer brain metastasis. Cancer Cell. 2020;38(857-871):e857.

    Article 
    CAS 

    Google Scholar
     

  • Cordone I, Masi S, Summa V, Carosi M, Vidiri A, Fabi A, et al. Overexpression of syndecan-1, MUC-1, and putative stem cell markers in breast cancer leptomeningeal metastasis: a cerebrospinal fluid flow cytometry study. Breast Cancer Res. 2017;19:46.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kim BG, Jang JH, Kim JW, Shin SH, Jeong BH, Lee K, et al. Clinical utility of plasma cell-free DNA EGFR mutation analysis in treatment-naive stage IV non-small cell lung Cancer patients. J Clin Med. 2022;11.

  • Liang J, Zhao W, Lu C, Liu D, Li P, Ye X, et al. Next-generation sequencing analysis of ctDNA for the detection of glioma and metastatic brain tumors in adults. Front Neurol. 2020;11:544.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pangeni RP, Olivaries I, Huen D, Buzatto VC, Dawson TP, Ashton KM, et al. Genome-wide methylation analyses identifies non-coding RNA genes dysregulated in breast tumours that metastasise to the brain. Sci Rep. 2022;12:1102.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yuan X, Wei Q, Komaki R, Liu Z, Yang J, Tucker SL, et al. TGFbeta1 polymorphisms predict distant metastasis-free survival in patients with inoperable non-small-cell lung Cancer after definitive radiotherapy. PLoS One. 2013;8:e65659.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma C, Yang X, Xing W, Yu H, Si T, Guo Z. Detection of circulating tumor DNA from non-small cell lung cancer brain metastasis in cerebrospinal fluid samples. Thorac Cancer. 2020;11:588–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martinez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ascierto PA, Minor D, Ribas A, Lebbe C, O’Hagan A, Arya N, et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol. 2013;31:3205–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei S, Liu W, Xu M, Qin H, Liu C, Zhang R, et al. Cathepsin F and Fibulin-1 as novel diagnostic biomarkers for brain metastasis of non-small cell lung cancer. Br J Cancer. 2022.

  • Yuksel U, Ogden M, Ozdemir A, Kisa U, Bakar B. Predictive diagnostic and/or prognostic biomarkers obtained from routine blood biochemistry in patients with solitary intracranial tumor. J Med Biochem. 2021;40:67–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin Y, Kang Y, Wang M, Wu B, Su B, Yin H, et al. Targeting polarized phenotype of microglia via IL6/JAK2/STAT3 signaling to reduce NSCLC brain metastasis. Signal Transduct Target Ther. 2022;7:52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pang X, Min J, Liu L, Liu Y, Ma N, Zhang H. S100B protein as a possible participant in the brain metastasis of NSCLC. Med Oncol. 2012;29:2626–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu W, Zhao J, Wei Y. Association between brain metastasis from lung cancer and the serum level of myelin basic protein. Exp Ther Med. 2015;9:1048–50.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang YT, Jiang F, Guo L, Si MY, Jiao XY. The soluble VEGF receptor 1 and 2 expression in cerebral spinal fluid as an indicator for leukemia central nervous system metastasis. J Neuro-Oncol. 2013;112:329–38.

    CAS 
    Article 

    Google Scholar
     

  • Darlix A, Hirtz C, Mollevi C, Ginestet N, Tiers L, Jacot W, et al. Serum glial fibrillary acidic protein is a predictor of brain metastases in patients with metastatic breast cancer. Int J Cancer. 2021;149:1605–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Darlix A, Hirtz C, Thezenas S, Maceski A, Gabelle A, Lopez-Crapez E, et al. The prognostic value of the tau protein serum level in metastatic breast cancer patients and its correlation with brain metastases. BMC Cancer. 2019;19:110.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Winther-Larsen A, Hviid CVB, Meldgaard P, Sorensen BS, Sandfeld-Paulsen B. Neurofilament light chain as a biomarker for brain metastases, vol. 12. Cancers (Basel); 2020.

  • Curtaz CJ, Schmitt C, Herbert SL, Feldheim J, Schlegel N, Gosselet F, et al. Serum-derived factors of breast cancer patients with brain metastases alter permeability of a human blood-brain barrier model. Fluids Barriers CNS. 2020;17:31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen GY, Cheng JC, Chen YF, Yang JC, Hsu FM. Circulating Exosomal integrin beta3 is associated with intracranial failure and survival in lung Cancer patients receiving cranial irradiation for brain metastases: a prospective observational study. Cancers (Basel). 2021;13.

  • Rodrigues G, Hoshino A, Kenific CM, Matei IR, Steiner L, Freitas D, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol. 2019;21:1403–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei L, Wang G, Yang C, Zhang Y, Chen Y, Zhong C, et al. MicroRNA-550a-3-5p controls the brain metastasis of lung cancer by directly targeting YAP1. Cancer Cell Int. 2021;21:491.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Im JH, Kim TH, Lee KY, Gwak HS, Lin W, Park JB, et al. Exploratory profiling of extracellular MicroRNAs in cerebrospinal fluid comparing leptomeningeal metastasis with other central nervous system tumor statuses. J Clin Med. 2021;10.

  • Wong GL, Abu Jalboush S, Lo HW. Exosomal MicroRNAs and organotropism in breast Cancer metastasis, vol. 12. Cancers (Basel); 2020.

  • Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs orchestrate pathophysiology of breast Cancer brain metastasis: advances in therapy. Mol Cancer. 2020;19:29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li J, Jing W, Jia W, Zhai X, Zhu H, Yu J. Downregulation of lncRNA XR_429159.1 linked to brain metastasis in patients with limited-stage small-cell lung Cancer. Front Oncol. 2021:11:603271.

  • Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, et al. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther. 2021;6:404.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park SY, Nam JS. The force awakens: metastatic dormant cancer cells. Exp Mol Med. 2020;52:569–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hosseini H, Obradovic MMS, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016;540:552–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gruber IV, Hartkopf AD, Hahn M, Taran FA, Staebler A, Wallwiener D, et al. Relationship between Hematogenous tumor cell dissemination and cellular immunity in DCIS patients. Anticancer Res. 2016;36:2345–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Sanger N, Effenberger KE, Riethdorf S, Van Haasteren V, Gauwerky J, Wiegratz I, et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int J Cancer. 2011;129:2522–6.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9:302–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castro-Giner F, Aceto N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med. 2020;12:31.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carter L, Rothwell DG, Mesquita B, Smowton C, Leong HS, Fernandez-Gutierrez F, et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med. 2017;23:114–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malani R, Fleisher M, Kumthekar P, Lin X, Omuro A, Groves MD, et al. Cerebrospinal fluid circulating tumor cells as a quantifiable measurement of leptomeningeal metastases in patients with HER2 positive cancer. J Neuro-Oncol. 2020;148:599–606.

    Article 
    CAS 

    Google Scholar
     

  • Ruan H, Zhou Y, Shen J, Zhai Y, Xu Y, Pi L, et al. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single-cell transcriptome analysis. Clin Transl Med. 2020;10:e246.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sevenich L, Bowman RL, Mason SD, Quail DF, Rapaport F, Elie BT, et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol. 2014;16:876–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wilkinson RDA, Burden RE, McDowell SH, McArt DG, McQuaid S, Bingham V, et al. A novel role for Cathepsin S as a potential biomarker in triple negative breast Cancer. J Oncol. 2019;2019:3980273.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hughes CS, Burden RE, Gilmore BF, Scott CJ. Strategies for detection and quantification of cysteine cathepsins-evolution from bench to bedside. Biochimie. 2016;122:48–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verdoes M, Edgington LE, Scheeren FA, Leyva M, Blum G, Weiskopf K, et al. A nonpeptidic cathepsin S activity-based probe for noninvasive optical imaging of tumor-associated macrophages. Chem Biol. 2012;19:619–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Agelaki S, Dragolia M, Markonanolaki H, Alkahtani S, Stournaras C, Georgoulias V, et al. Phenotypic characterization of circulating tumor cells in triple negative breast cancer patients. Oncotarget. 2017;8:5309–22.

    PubMed 
    Article 

    Google Scholar
     

  • Amir E, Clemons M, Freedman OC, Miller N, Coleman RE, Purdie C, et al. Tissue confirmation of disease recurrence in patients with breast cancer: pooled analysis of two large prospective studies. J Clin Oncol. 2010;28:1007.

    Article 

    Google Scholar
     

  • Bernemann C, Huelsewig C, Kiesel L, Liedtke C. Targeting triple-negative breast cancer by conversion into HER2-positive cancer: a novel therapeutic approach. J Clin Oncol. 2012;30:e11534.

    Article 

    Google Scholar
     

  • Jacot W, Cottu P, Berger F, Dubot C, Venat-Bouvet L, Lortholary A, et al. Actionability of HER2-amplified circulating tumor cells in HER2-negative metastatic breast cancer: the CirCe T-DM1 trial. Breast Cancer Res. 2019;21:121.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, et al. A review on epidermal growth factor receptor’s role in breast and non-small cell lung cancer. Chem Biol Interact. 2021;351:109735.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berghoff AS, Liao Y, Karreman MA, Ilhan-Mutlu A, Gunkel K, Sprick MR, et al. Identification and characterization of Cancer cells that initiate metastases to the brain and other organs. Mol Cancer Res. 2021;19:688–701.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ren D, Zhu X, Kong R, Zhao Z, Sheng J, Wang J, et al. Targeting brain-adaptive Cancer stem cells prohibits brain metastatic colonization of triple-negative breast Cancer. Cancer Res. 2018;78:2052–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sullivan JP, Nahed BV, Madden MW, Oliveira SM, Springer S, Bhere D, et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov. 2014;4:1299–309.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brlek P, Bukovac A, Kafka A, Pecina-Slaus N. TWIST1 upregulation affects E-cadherin expression in brain metastases. Clin Transl Oncol. 2021;23:1085–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vishnoi M, Peddibhotla S, Yin W. A TS, George GC, Hong DS, Marchetti D: the isolation and characterization of CTC subsets related to breast cancer dormancy. Sci Rep. 2015;5:17533.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Nonneville A, Finetti P, Mamessier E, Bertucci F. RE: NDRG1 in aggressive breast Cancer progression and brain metastasis. J Natl Cancer Inst. 2022.

  • Said HM, Safari R, Al-Kafaji G, Ernestus RI, Lohr M, Katzer A, et al. Time- and oxygen-dependent expression and regulation of NDRG1 in human brain cancer cells. Oncol Rep. 2017;37:3625–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schlee Villodre E, Hu X, Eckhardt BL, Larson R, Huo L, Yoon EC, et al. NDRG1 in aggressive breast Cancer progression and brain metastasis. J Natl Cancer Inst. 2021.

  • Hanssen A, Riebensahm C, Mohme M, Joosse SA, Velthaus JL, Berger LA, et al. Frequency of circulating tumor cells (CTC) in Patients with brain metastases: implications as a risk assessment marker in oligo-metastatic disease, vol. 10. Cancers (Basel); 2018.

  • Shirasawa M, Fukui T, Kusuhara S, Harada S, Nishinarita N, Hiyoshi Y, et al. Prognostic differences between oligometastatic and polymetastatic extensive disease-small cell lung cancer. PLoS One. 2019;14:e0214599.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stephens SJ, Moravan MJ, Salama JK. Managing patients with Oligometastatic non-small-cell lung Cancer. J Oncol Pract. 2018;14:23–31.

    PubMed 
    Article 

    Google Scholar
     

  • Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rubio-Perez C, Planas-Rigol E, Trincado JL, Bonfill-Teixidor E, Arias A, Marchese D, et al. Immune cell profiling of the cerebrospinal fluid enables the characterization of the brain metastasis microenvironment. Nat Commun. 2021;12:1503.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids–a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 2007;581:795–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang JY, Hsieh JS, Chang MY, Huang TJ, Chen FM, Cheng TL, et al. Molecular detection of APC, K- ras, and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers. World J Surg. 2004;28:721–6.

    PubMed 

    Google Scholar
     

  • Shaw JA, Smith BM, Walsh T, Johnson S, Primrose L, Slade MJ, et al. Microsatellite alterations plasma DNA of primary breast cancer patients. Clin Cancer Res. 2000;6:1119–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46:318–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Mandel P, Metais P. Nuclear acids in human blood plasma. C R Seances Soc Biol Fil. 1948;142:241–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Calabuig-Farinas S, Jantus-Lewintre E, Herreros-Pomares A, Camps C. Circulating tumor cells versus circulating tumor DNA in lung cancer-which one will win? Transl Lung Cancer Res. 2016;5:466–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A. 2016;113:E1826–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun K, Jiang P, Chan KC, Wong J, Cheng YK, Liang RH, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 2015;112:E5503–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu J, Zhao H, Huang Y, Xu S, Zhou Y, Zhang W, et al. Genome-wide cell-free DNA methylation analyses improve accuracy of non-invasive diagnostic imaging for early-stage breast cancer. Mol Cancer. 2021;20:36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deyell M, Garris CS, Laughney AM. Cancer metastasis as a non-healing wound. Br J Cancer. 2021;124:1491–502.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lubotzky A, Zemmour H, Neiman D, Gotkine M, Loyfer N, Piyanzin S, et al. Liquid biopsy reveals collateral tissue damage in cancer. JCI Insight. 2022;7.

  • Lam VK, Zhang J, Wu CC, Tran HT, Li L, Diao L, et al. Genotype-specific differences in circulating tumor DNA levels in advanced NSCLC. J Thorac Oncol. 2021;16:601–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chakrabarti S, Xie H, Urrutia R, Mahipal A. The promise of circulating tumor DNA (ctDNA). In: In the Management of Early-Stage Colon Cancer: a critical review, vol. 12. Cancers (Basel); 2020.

  • Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21:795–801.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tie J, Cohen JD, Wang Y, Christie M, Simons K, Lee M, et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III Colon Cancer. JAMA Oncol. 2019;5:1710–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet. 2019;51:1113–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016;113:E854–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao J, Li J, Song L, He Q, Wu Y, Li L, Liu D, Wang C, Li W: The number of brain metastases predicts the survival of non-small cell lung cancer patients with EGFR mutation status. Cancer Rep (Hoboken) 2021:e1550.

  • Shin DY, Na II, Kim CH, Park S, Baek H, Yang SH. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J Thorac Oncol. 2014;9:195–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang H, Wang Z, Zhang G, Zhang M, Zhang X, Li H, et al. Driver genes as predictive indicators of brain metastasis in patients with advanced NSCLC: EGFR, ALK, and RET gene mutations. Cancer Med. 2020;9:487–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johung KL, Yeh N, Desai NB, Williams TM, Lautenschlaeger T, Arvold ND, et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung Cancer and brain metastasis. J Clin Oncol. 2016;34:123–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cacho-Diaz B, Garcia-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sanchez E, Herrera-Montalvo LA. Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med. 2020;18:1.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin X, Demere Z, Nair K, Ali A, Ferraro GB, Natoli T, et al. A metastasis map of human cancer cell lines. Nature. 2020;588:331–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Richichi C, Fornasari L, Melloni GEM, Brescia P, Patane M, Del Bene M, et al. Mutations targeting the coagulation pathway are enriched in brain metastases. Sci Rep. 2017;7:6573.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372.

  • Barciszewska AM. Global DNA demethylation as an epigenetic marker of human brain metastases. Biosci Rep. 2018;38.

  • Fang P, Boehling NS, Koay EJ, Bucheit AD, Jakob JA, Settle SH, et al. Melanoma brain metastases harboring BRAF (V600K) or NRAS mutations are associated with an increased local failure rate following conventional therapy. J Neuro-Oncol. 2018;137:67–75.

    CAS 
    Article 

    Google Scholar
     

  • Menzies AM, Haydu LE, Visintin L, Carlino MS, Howle JR, Thompson JF, et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res. 2012;18:3242–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bucheit AD, Syklawer E, Jakob JA, Bassett RL Jr, Curry JL, Gershenwald JE, et al. Clinical characteristics and outcomes with specific BRAF and NRAS mutations in patients with metastatic melanoma. Cancer. 2013;119:3821–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379:1893–901.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Long GV, Trefzer U, Davies MA, Kefford RF, Ascierto PA, Chapman PB, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:1087–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30:2522–9.

    PubMed 
    Article 

    Google Scholar
     

  • Seremet T, Jansen Y, Planken S, Njimi H, Delaunoy M, El Housni H, et al. Undetectable circulating tumor DNA (ctDNA) levels correlate with favorable outcome in metastatic melanoma patients treated with anti-PD1 therapy. J Transl Med. 2019;17:303.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dzung A, Saltari A, Tiso N, Lyck R, Dummer R, Levesque MP. STK11 prevents invasion through STAT3/5 and FAK repression in cutaneous melanoma. J Invest Dermatol. 2021.

  • Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maurya SK, Khan P, Rehman AU, Kanchan RK, Perumal N, Mahapatra S, et al. Rethinking the chemokine cascade in brain metastasis: preventive and therapeutic implications. Semin Cancer Biol. 2021.

  • Khan GJ, Sun L, Abbas M, Naveed M, Jamshaid T, Baig M, et al. In-vitro pre-treatment of Cancer cells with TGF-beta1: a novel approach of tail vein lung Cancer metastasis mouse model for anti-metastatic studies. Curr Mol Pharmacol. 2019;12:249–60.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wilkinson RD, Williams R, Scott CJ, Burden RE. Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biol Chem. 2015;396:867–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guerreiro EM, Ovstebo R, Thiede B, Costea DE, Soland TM, Kanli Galtung H. Cancer cell line-specific protein profiles in extracellular vesicles identified by proteomics. PLoS One. 2020;15:e0238591.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Y, Liu YS, Wu PF, Li Q, Dai WM, Yuan S, et al. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis. Int J Biochem Cell Biol. 2015;66:11–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen L, Hu X, Wu H, Jia Y, Liu J, Mu X, et al. Over-expression of S100B protein as a serum marker of brain metastasis in non-small cell lung cancer and its prognostic value. Pathol Res Pract. 2019;215:427–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mu S, Ma H, Shi J, Zhen D. The expression of S100B protein in serum of patients with brain metastases from small-cell lung cancer and its clinical significance. Oncol Lett. 2017;14:7107–10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi H, Puvenna V, Brennan C, Mahmoud S, Wang XF, Phillips M, et al. S100B and S100B autoantibody as biomarkers for early detection of brain metastases in lung cancer. Transl Lung Cancer Res. 2016;5:413–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bechmann T, Madsen JS, Brandslund I, Lund ED, Ormstrup T, Jakobsen EH, et al. Predicting brain metastases of breast cancer based on serum S100B and serum HER2. Oncol Lett. 2013;6:1265–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang H, Liu J, Meng Q, Niu G. Multidrug resistance protein and topoisomerase 2 alpha expression in non-small cell lung cancer are related with brain metastasis postoperatively. Int J Clin Exp Pathol. 2015;8:11537–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maliyakkal N, Appadath Beeran A, Udupa N. Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells. Saudi Pharm J. 2021;29:857–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mansouri A, Padmanaban V, Aregawi D, Glantz M. VEGF and immune checkpoint inhibition for prevention of brain metastases: systematic review and Meta-analysis. Neurology. 2021.

  • Villodre ES, Hu X, Larson R, Finetti P, Gomez K, Balema W, et al. Lipocalin 2 promotes inflammatory breast cancer tumorigenesis and skin invasion. Mol Oncol. 2021;15:2752–65.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Priego N, Zhu L, Monteiro C, Mulders M, Wasilewski D, Bindeman W, et al. Author correction: STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med. 2018;24:1481.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ashraf MI, Schwelberger HG, Brendel KA, Feurle J, Andrassy J, Kotsch K, et al. Exogenous Lipocalin 2 ameliorates acute rejection in a mouse model of renal transplantation. Am J Transplant. 2016;16:808–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaur S, Chang T, Singh SP, Lim L, Mannan P, Garfield SH, et al. CD47 signaling regulates the immunosuppressive activity of VEGF in T cells. J Immunol. 2014;193:3914–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thorne M, Moore CS, Robertson GS. Lack of TIMP-1 increases severity of experimental autoimmune encephalomyelitis: effects of darbepoetin alfa on TIMP-1 null and wild-type mice. J Neuroimmunol. 2009;211:92–100.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reynes G, Vila V, Martin M, Parada A, Fleitas T, Reganon E, et al. Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma. J Neuro-Oncol. 2011;102:35–41.

    CAS 
    Article 

    Google Scholar
     

  • Kim LS, Huang S, Lu W, Lev DC, Price JE. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis. 2004;21:107–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dao T, Gapihan G, Leboeuf C, Hamdan D, Feugeas JP, Boudabous H, et al. Expression of angiopoietin-like 4 fibrinogen-like domain (cANGPTL4) increases risk of brain metastases in women with breast cancer. Oncotarget. 2020;11:1590–602.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dai J, Cimino PJ, Gouin KH 3rd, Grzelak CA, Barrett A, Lim AR, et al. Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nat Can. 2022;3:25–42.

    CAS 
    Article 

    Google Scholar
     

  • Kittur SD, Adler WH, Martin GR, Schapiro MB, Rapoport SI, Gunzler V. Laminin concentrations in serum and cerebrospinal fluid in aging and Alzheimer’s disease. Int J Dev Neurosci. 1993;11:95–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alzial G, Renoult O, Paris F, Gratas C, Clavreul A, Pecqueur C. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene. 2021.

  • Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21:669–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yen KE, Bittinger MA, Su SM, Fantin VR. Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene. 2010;29:6409–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol. 2020;22:310–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ruiz-Rodado V, Brender JR, Cherukuri MK, Gilbert MR, Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. Prog Nucl Magn Reson Spectrosc. 2021;122:23–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith JK, Castillo M, Kwock L. MR spectroscopy of brain tumors. Magn Reson Imaging Clin N Am. 2003;11(415-429):v–vi.


    Google Scholar
     

  • Wang FX, Chen K, Huang FQ, Alolga RN, Ma J, Wu ZX, et al. Cerebrospinal fluid-based metabolomics to characterize different types of brain tumors. J Neurol. 2020;267:984–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ge Z, Feng P, Zhang Z, Li J, Yu Q. Identification of novel serum metabolic biomarkers as indicators in the progression of intravenous Leiomyomatosis: a high performance liquid chromatography-tandem mass spectrometry-based study. Front Cell Dev Biol. 2021;9:695540.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ferraro GB, Ali A, Luengo A, Kodack DP, Deik A, Abbott KL, et al. Fatty acid synthesis is required for breast Cancer brain metastasis. Nat Can. 2021;2:414–28.

    CAS 
    Article 

    Google Scholar
     

  • Saito K, Hattori K, Andou T, Satomi Y, Gotou M, Kobayashi H, et al. Characterization of postprandial effects on CSF metabolomics: a pilot study with parallel comparison to plasma. Metabolites. 2020;10.

  • Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, et al. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 2007;67:1472–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Özer Ö, Nemutlu E, Eylem CC, Kır S, Reçber T, Aktas BY, et al. Detection of brain metastasis by metabolomics methods in metastatic breast cancer patients. J Clin Oncol. 2019;37:e12572.

    Article 

    Google Scholar
     

  • Larkin JR, Dickens AM, Claridge TD, Bristow C, Andreou K, Anthony DC, et al. Early diagnosis of brain metastases using a biofluids-metabolomics approach in mice. Theranostics. 2016;6:2161–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anami S, Doi H, Nakamatsu K, Uehara T, Wada Y, Fukuda K, et al. Serum lactate dehydrogenase predicts survival in small-cell lung cancer patients with brain metastases that were treated with whole-brain radiotherapy. J Radiat Res. 2019;60(257-263).

  • Dong T, Liu Z, Xuan Q, Wang Z, Ma W, Zhang Q. Tumor LDH-A expression and serum LDH status are two metabolic predictors for triple negative breast cancer brain metastasis. Sci Rep. 2017;7:6069.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367.

  • Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 2019;1871:455–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182(1044-1061):e1018.


    Google Scholar
     

  • Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Author correction: large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2021;5:944–5.

    PubMed 
    Article 

    Google Scholar
     

  • Banks WA, Sharma P, Bullock KM, Hansen KM, Ludwig N, Whiteside TL. Transport of extracellular vesicles across the blood-brain barrier: brain pharmacokinetics and effects of inflammation. Int J Mol Sci. 2020;21.

  • Tomasetti M, Lee W, Santarelli L, Neuzil J. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med. 2017;49:e285.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang H, Deng T, Liu R, Bai M, Zhou L, Wang X, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun. 2017;8:15016.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo Y, Ji X, Liu J, Fan D, Zhou Q, Chen C, et al. Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer. 2019;18:39.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020;5:144.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allelein S, Medina-Perez P, Lopes ALH, Rau S, Hause G, Kolsch A, et al. Potential and challenges of specifically isolating extracellular vesicles from heterogeneous populations. Sci Rep. 2021;11:11585.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bojmar L, Kim HS, Tobias GC, Pelissier Vatter FA, Lucotti S, Gyan KE, et al. Extracellular vesicle and particle isolation from human and murine cell lines, tissues, and bodily fluids. STAR Protoc. 2021;2:100225.

    PubMed 
    Article 

    Google Scholar
     

  • Zhang H, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc. 2019;14:1027–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sidhom K, Obi PO, Saleem A. A review of Exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci. 2020;21.

  • Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9:5395.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meltzer S, Bjornetro T, Lyckander LG, Flatmark K, Dueland S, Samiappan R, et al. Circulating Exosomal miR-141-3p and miR-375 in metastatic progression of rectal Cancer. Transl Oncol. 2019;12:1038–44.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 2017;8:14448.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang P, Wu Y, Chen W, Zhang M, Qin J. Malignant melanoma-derived exosomes induce endothelial damage and glial activation on a human BBB Chip model. Biosensors (Basel). 2022;12.

  • Han M, Hu J, Lu P, Cao H, Yu C, Li X, et al. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis. 2020;11:43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, et al. Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer. 2019;18:43.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Serrati S, Guida M, Di Fonte R, De Summa S, Strippoli S, Iacobazzi RM, et al. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma. Mol Cancer. 2022;21:20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25:234–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vogetseder A, Thies S, Ingold B, Roth P, Weller M, Schraml P, et al. Alphav-integrin isoform expression in primary human tumors and brain metastases. Int J Cancer. 2013;133:2362–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kinjyo I, Bragin D, Grattan R, Winter SS, Wilson BS. Leukemia-derived exosomes and cytokines pave the way for entry into the brain. J Leukoc Biol. 2019;105:741–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu ZH, Miao ZW, Jiang QZ, Gan DX, Wei XG, Xue XZ, et al. Brain microvascular endothelial cell exosome-mediated S100A16 up-regulation confers small-cell lung cancer cell survival in brain. FASEB J. 2019;33:1742–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Camacho L, Guerrero P, Marchetti D. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS One. 2013;8:e73790.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin TC, Yang CH, Cheng LH, Chang WT, Lin YR, Cheng HC. Fibronectin in Cancer: friend or foe. Cells. 2019;9.

  • Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer. 2007;6:24.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Maji S, Chaudhary P, Akopova I, Nguyen PM, Hare RJ, Gryczynski I, et al. Exosomal Annexin II promotes angiogenesis and breast Cancer metastasis. Mol Cancer Res. 2017;15:93–105.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, et al. RNA-based therapies: a cog in the wheel of lung cancer defense. Mol Cancer. 2021;20:54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giannopoulou L, Zavridou M, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res. 2019;205:77–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drusco A, Bottoni A, Lagana A, Acunzo M, Fassan M, Cascione L, et al. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget. 2015;6:20829–39.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shipman L. Microenvironment: astrocytes silence PTEN to promote brain metastasis. Nat Rev Cancer. 2015;15:695.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aleckovic M, Kang Y. Welcoming treat: astrocyte-derived exosomes induce PTEN suppression to Foster brain metastasis. Cancer Cell. 2015;28:554–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xing F, Liu Y, Wu SY, Wu K, Sharma S, Mo YY, et al. Correction: loss of XIST in breast Cancer activates MSN-c-met and reprograms microglia via Exosomal miRNA to promote brain metastasis. Cancer Res. 2021;81:5582.

    PubMed 
    Article 

    Google Scholar
     

  • Fong MY, Wang SE. The exploits of cancer’s greedy sweet-tooth. Cell Cycle. 2015;14:1768–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schimmel RJ. Role of cell calcium in alpha-1 adrenergic receptor control of arachidonic acid release from brown adipocytes. Cell Signal. 1989;1:607–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu X, Somlo G, Yu Y, Palomares MR, Li AX, Zhou W, et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J Transl Med. 2012;10:42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sato J, Shimomura A, Kawauchi J, Matsuzaki J, Yamamoto Y, Takizawa S, et al. Brain metastasis-related microRNAs in patients with advanced breast cancer. PLoS One. 2019;14:e0221538.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu D, Deng S, Li L, Liu T, Zhang T, Li J, et al. Correction: TGF-beta1-mediated exosomal lnc-MMP2-2 increases blood-brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis. 2021;12:916.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu D, Deng S, Li L, Liu T, Zhang T, Li J, et al. TGF-beta1-mediated exosomal lnc-MMP2-2 increases blood-brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis. 2021;12:721.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karimpour M, Ravanbakhsh R, Maydanchi M, Rajabi A, Azizi F, Saber A. Cancer driver gene and non-coding RNA alterations as biomarkers of brain metastasis in lung cancer: a review of the literature. Biomed Pharmacother. 2021;143:112190.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun G, Ding X, Bi N, Wang Z, Wu L, Zhou W, et al. Correction: molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma. PLoS Genet. 2020;16:e1009139.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun G, Ding X, Bi N, Wu L, Wang J, Zhang W, et al. MiR-423-5p in brain metastasis: potential role in diagnostics and molecular biology. Cell Death Dis. 2018;9:936.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhao C, Xu Y, Zhang Y, Tan W, Xue J, Yang Z, et al. Downregulation of miR-145 contributes to lung adenocarcinoma cell growth to form brain metastases. Oncol Rep. 2013;30:2027–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, et al. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer. 2011;129:2621–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jia W, Lu R, Martin TA, Jiang WG. The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (review). Mol Med Rep. 2014;9:779–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma SC, Li Q, Peng JY, Zhouwen JL, Diao JF, Niu JX, et al. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis. CNS Neurosci Ther. 2017;23:947–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giannoudis A, Clarke K, Zakaria R, Vareslija D, Farahani M, Rainbow L, et al. A novel panel of differentially-expressed microRNAs in breast cancer brain metastasis may predict patient survival. Sci Rep. 2019;9:18518.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morad G, Daisy CC, Otu HH, Libermann TA, Dillon ST, Moses MA. Cdc42-dependent transfer of mir301 from breast Cancer-derived extracellular vesicles regulates the matrix modulating ability of astrocytes at the blood-brain barrier. Int J Mol Sci. 2020;21.

  • Guglielmi L, Nardella M, Musa C, Cifola I, Porru M, Cardinali B, et al. Circulating miRNAs in small extracellular vesicles secreted by a human melanoma xenograft in mouse brains. Cancers (Basel). 2020;12.

  • Fu B, Liu W, Zhu C, Li P, Wang L, Pan L, et al. Circular RNA circBCBM1 promotes breast cancer brain metastasis by modulating miR-125a/BRD4 axis. Int J Biol Sci. 2021;17:3104–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu B, Zhang A, Li M, Pan L, Tang W, An M, et al. Circular RNA profile of breast cancer brain metastasis: identification of potential biomarkers and therapeutic targets. Epigenomics. 2018;10:1619–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhou SY, Zhu LP, et al. Circular RNA hsa_circ_0052112 promotes cell migration and invasion by acting as sponge for miR-125a-5p in breast cancer. Biomed Pharmacother. 2018;107:1342–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu Y, Chen L, Li L, Cao Y. Exosomes derived from brain metastatic breast Cancer cells destroy the blood-brain barrier by carrying lncRNA GS1-600G8.5. Biomed Res Int. 2020;2020(7461727).

  • Wang S, Liang K, Hu Q, Li P, Song J, Yang Y, et al. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J Clin Invest. 2017;127:4498–515.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu J, Zhang C, Feng Z. Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin Shanghai. 2014;46:170–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muller PA, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192:209–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hinestrosa JP, Kurzrock R, Lewis JM, Schork NJ, Schroeder G, Kamat AM, et al. Early-stage multi-cancer detection using an extracellular vesicle protein-based blood test. Commun Med. 2022;2:29.

    Article 

    Google Scholar
     

  • Park MH, Reategui E, Li W, Tessier SN, Wong KH, Jensen AE, et al. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic Chip. J Am Chem Soc. 2017;139:2741–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)