• Poulin R, Mouillot D. Combining phylogenetic and ecological information into a new index of host specificity. J Parasitol. 2006;91:511–4.

    Article 

    Google Scholar
     

  • Futuyma DJ, Moreno G. The evolution of ecological specialization. Annu Rev Ecol Syst. 1988;19:207–33.

    Article 

    Google Scholar
     

  • Kilner RM, Langmore NE. Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes. Biol Rev. 2011;86:836–52.

    PubMed 
    Article 

    Google Scholar
     

  • Mokkonen M, Lindstedt C. The evolutionary ecology of deception. Biol Rev. 2016;91:1020–35.

    PubMed 
    Article 

    Google Scholar
     

  • Saul-Gershenz LS, Millar JG. Phoretic nest parasites use sexual deception to obtain transport to their host’ s nest. PNAS. 2006;103:14039–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saul-Gershenz L, Millar JG, McElfresh JS, Williams NM. Deceptive signals and behaviours of a cleptoparasitic beetle show local adaptation to different host bee species. Proc Natl Acad Sci U S A. 2018;115:9756–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parmentier T, De Laender F, Wenseleers T, Bonte D. Prudent behaviour rather than chemical deception enables a parasite to exploit its ant host. Behav Ecol. 2018;29:1225–32.


    Google Scholar
     

  • Barrett LG, Heil M. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends Plant Sci. 2012;17:282–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poulin R. Evolutionary ecology of parasites. 2nd ed. Princeton: Princeton university press; 2011.

  • Ali JG, Agrawal AA. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 2012;17:293–302.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ŝimková A, Verneau O, Gelnar M, Morand S. Specificity and specialization of congeneric monogeneans parasitizing cyprinid fish. Evolution. 2006;60:1023–37.

    PubMed 
    Article 

    Google Scholar
     

  • Boulton RA, Heimpel GE. Mind the gap: the evolution of oviposition site and specialization in the parasitoid superfamily Chalcidoidea. Biol J Linn Soc. 2018:1–15.

  • Parmentier T, De Laender F, Bonte D. The topology and drivers of ant – symbiont networks across Europe. Biol Rev. 2020;95:1664–88.

    PubMed 
    Article 

    Google Scholar
     

  • Thomas JA, Schönrogge K, Elmes GW. Specializations and host associations of social parasites of ants. In: Fellowes MDE, Hollo GJ, Rolff J, editors. Insect evolutionary ecology. Royal Entomological Society. UK: CABI Publishing; 2005. p. 479–518.


    Google Scholar
     

  • Komatsu T, Maruyama M, Itino T. Behavioural differences between two ant cricket species in Nansei Islands: host-specialist versus host-generalist. Insect Soc. 2009;56:389–96.

    Article 

    Google Scholar
     

  • von Beeren C, Brückner A, Maruyama M, Burke G, Wieschollek J, Kronauer DJC. Chemical and behavioural integration of army ant-associated rove beetles – a comparison between specialists and generalists. Front Zool. 2018;15:1–15.

    Article 
    CAS 

    Google Scholar
     

  • Komatsu T, Maruyama M, Hattori M, Itino T. Morphological characteristics reflect food sources and degree of host ant specificity in four Myrmecophilus crickets. Insect Soc. 2018;65:47–57.

    Article 

    Google Scholar
     

  • Kistner DH. Social and evolutionary significance of social insect symbionts. In: Herman HR, editor. Social insects. Volume I. San Francisco, Londen: Academic Press; 1979. p. 339–413.

    Chapter 

    Google Scholar
     

  • van Zweden JS, d’Ettorre P. Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères A-G, editors. Insect hydrocarbons biology, biochemistry and chemical ecology. New York: Cambridge University Press; 2010. p. 222–43.

    Chapter 

    Google Scholar
     

  • Sturgis SJ, Gordon DM. Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecol News. 2012;16:101–10.


    Google Scholar
     

  • Van Wilgenburg E, Ryan D, Morrison P, Marriott PJ, Elgar MA. Nest- and colony-mate recognition in polydomous colonies of meat ants (Iridomyrmex purpureus). Naturwissenschaften. 2006;93:309–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liang D, Silverman J. “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the argentine ant, Linepithema humile. Naturwissenschaften. 2000;87:412–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van Zweden JS, Brask JB, Christensen JH, Boomsma JJ, Linksvayer T, D’Ettorre P. Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. J Evol Biol. 2010;23:1498–508.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lenoir A, D’Ettorre P, Errard C. Chemical ecology and social parasitism in ants. Annu Rev Entomol. 2001;46:537–99.

  • Parmentier T, Dekoninck W, Wenseleers T. Arthropods associate with their red wood ant host without matching nestmate recognition cues. J Chem Ecol. 2017;43:644–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akino T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol News. 2008;11:173–81.


    Google Scholar
     

  • Witte V, Leingärtner A, Sabaß L, Hashim R, Foitzik S. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim Behav. 2008;76:1477–86.

    Article 

    Google Scholar
     

  • Lenoir A, Chalon Q, Carvajal A, Ruel C, Barroso Á, Lackner T, et al. Chemical integration of myrmecophilous guests in Aphaenogaster ant nests. Psyche A J Entomol. 2012;2012:1–12. https://doi.org/10.1155/2012/840860.

    Article 

    Google Scholar
     

  • Polidori C, Geyer M, Schmitt T. Do Sphecodes cuckoo bees use chemical insignificance to invade the nests of their social Lasioglossum bee hosts? Apidologie. 2020;51:147–62.

    Article 

    Google Scholar
     

  • Lorenzi MC, Cervo R, Zacchi F, Turillazzi S, Bagnères A-G. Dynamics of chemical mimicry in the social parasite wasp Polistes semenowi (Hymenoptera: Vespidae). Parasitology. 2004;129:643–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nehring V, Dani FR, Turillazzi S, Boomsma JJ, d’Ettorre P. Integration strategies of a leaf-cutting ant social parasite. Anim Behav. 2015;108:55–65.

    Article 

    Google Scholar
     

  • Parker J. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol News. 2016;22:65–108.


    Google Scholar
     

  • Parmentier T. Guests of social insects. In: Starr C, editor. Encyclopedia of social insects. Cham: Springer; 2020.


    Google Scholar
     

  • Komatsu T, Maruyama M, Itino T. Nonintegrated host association of Myrmecophilus tetramorii, a specialist myrmecophilous ant cricket (Orthoptera : Myrmecophilidae). Psyche J Entomol. 2013;2013:568536.

  • Parmentier T, Dekoninck W, Wenseleers T. Do well-integrated species of an inquiline community have a lower brood predation tendency? A test using red wood ant myrmecophiles. BMC Evol Biol. 2016;16:12.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hölldobler B, Kwapich CL. Amphotis marginata (Coleoptera: Nitidulidae) a highwayman of the ant Lasius fuliginosus. Plos One. 2017;12:e0180847.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wasmann E. Kritisches Verzeichniss der myrmekophilen und termitophilen Arthropoden. Berlin: F. L. Dames, xv; 1894.

    Book 

    Google Scholar
     

  • Kistner DH. The social insects’ bestiary. In: Hermann HR, editor. Social insects, vol. 3. New York: Academic press. Social Insects Vol III; 1982. p. 362–421.


    Google Scholar
     

  • Witte V, Foitzik S, Hashim R, Maschwitz U, Schulz S. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda. J Chem Ecol. 2009;35:355–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Molero-Baltanás R, Bach De Roca C, Tinaut A, Pérez JD, Gaju-Ricart M. Symbiotic relationships between silverfish (Zygentoma: Lepismatidae, Nicoletiidae) and ants (Hymenoptera: Formicidae) in the Western Palaearctic. A quantitative analysis of data from Spain. Myrmecol News. 2017;24:107–22.

  • Molero-Baltanás R, Gaju-Ricart M, Bach De Roca C. Myrmecophilic Zygentoma (Insecta: Apterygota) from the Ibero-Balearic fauna. Biogeogr remarks proc Xth Int Colloq Apterygota, České Budějovice 2000 Apterygota begin third Millenn. Pedobiologia. 2002;46:284–95.

    Article 

    Google Scholar
     

  • Maruyama M, Akino T, Hashim R, Komatsu T. Behaviour and cuticular hydrocarbons of myrmecophilous insects (Coleoptera: Staphylinidae; Diptera: Phoridae; Thysanura) associated with Asian Aenictus army ants (Hymenoptera; Formicidae). Sociobiology. 2009;54:19–35.


    Google Scholar
     

  • von Beeren C, Brückner A, Hoenle PO, Jara BO, Kronauer DJC, Blüthgen N. Multiple phenotypic traits as triggers of host attacks towards ant symbionts: body size, morphological gestalt, and chemical mimicry accuracy. Front Zool. 2021;18.

  • Claus R, Vantieghem P, Molero-Baltanás R, Parmentier T. Established populations of the indoor silverfish Lepisma saccharinum (Insecta : Zygentoma) in red wood ant nests. Belgian J Zool. 2022;152:45–53.

    Article 

    Google Scholar
     

  • Oksanen J, Blanchet, F. Guillaume Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, et al. vegan: Community Ecology Package (R package version 2.5–7). 2020.


    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.


    Google Scholar
     

  • Messadi D, Helaimia F, Ali-Mokhnache S, Boumahraz M. Accurate determination of retention indices in programmed temperature gas chromatography. Chromatographia. 1990;29:429–34.

    CAS 
    Article 

    Google Scholar
     

  • Martin SJ, Vitikainen E, Helanterä H, Drijfhout FP. Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc R Soc B Biol Sci. 2008;275:1271–8.

    CAS 
    Article 

    Google Scholar
     

  • Guerrieri FJ, Nehring V, Jørgensen CG, Nielsen J, Galizia CG, D’Ettorre P. Ants recognize foes and not friends. Proc R Soc B. 2009;276:2461–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brückner A, Heethoff M. A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology. 2017;27:33–46.

    Article 
    CAS 

    Google Scholar
     

  • Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cammaerts R. A quantitative comparison of the behavioural reactions of Lasius flavus ant workers (Formicidae) toward the guest beetle Claviger testaceus (Pselaphidae), ant larvae, intruder insects and cadavers. Sociobiology. 1999;33:145–70.


    Google Scholar
     

  • Di Giulio A, Maurizi E, Barbero F, Sala M, Fattorini S, Balletto E, et al. The pied piper: a parasitic beetle’s melodies modulate ant behaviours. Plos One. 2015;10:e0130541.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Maruyama M, Parker J. Deep-time parallel evolution of myrmecoid syndrome in rove beetle symbionts of army ants. Curr Biol. 2017;27:920–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Janet C. Etudes sur les fourmis, les guêpes et les abeilles. Note 14: Rapports des animaux myrmécophiles avec les fourmis. Ducourtieux, Limoges. 1897.

  • Moritz RFA. Chemical camouflage of the Death’s head hawkmoth (Acherontia atropos L.) in honeybee colonies. Naturwissenschaften. 1991;78:179–82.

    CAS 
    Article 

    Google Scholar
     

  • Howard RW, Blomquist GJ. Ecological, behavioural, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol. 2005;50:371–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Howard RW, McDaniel CA, Blomquist GJ. Chemical mimicry as an integrating mechanism for three termitophiles associated with Reticulitermes virginicus (banks). Psyche (Stuttg). 1982;89:157–68.

    Article 

    Google Scholar
     

  • Howard RW, Stanley-Samuelson DW, Akre RD. Biosynthesis and chemical mimicry from the obligate predator Microdon albicomatus and its ant prey, Myrmica incompleta Provancher (Hymenoptera: Formicidae). J Kansas Entomol Soc. 1990;63:437–43.


    Google Scholar
     

  • Salazar A, Fürstenau B, Quero C, Pérez-hidalgo N, Carazo P, Font E. Aggressive mimicry coexists with mutualism in an aphid. PNAS. 2015;112:1101–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akino T, Mochizuki R, Morimoto M, Yamaoka R. Chemical camouflage of myrmecophilous cricket Myrmecophilus sp. to be integrated with several ant species. Jpn J Appl Entomol Zool. 1996;40:39–46.

    CAS 
    Article 

    Google Scholar
     

  • Nash DR, Boomsma JJ. Communication between hosts and social parasites. In: d’Ettorre P, Hughes DP, editors. Sociobiology of communication: an interdisciplinary perspecftive. Princeton: Oxford University Press; 2008. p. 325.


    Google Scholar
     

  • von Beeren C, Schulz S, Hashim R, Witte V. Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol. 2011;11:30.

    PubMed 
    Article 

    Google Scholar
     

  • Elgar M, Allan R. Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften. 2004;91:143–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akino T, Knapp JJ, Thomas JA, Elmes GW. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B. 1999;266:1419–26.

    CAS 
    Article 

    Google Scholar
     

  • Pérez-Lachaud G, Bartolo-Reyes JC, Quiroa-Montalván CM, Cruz-Lopez L, Lenoir A, Lachaud JP. How to escape from the host nest: imperfect chemical mimicry in eucharitid parasitoids and exploitation of the ants’ hygienic behaviour. J Insect Physiol. 2015;75:63–72.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Parmentier T, Gaju-Ricart M, Wenseleers T, Molero-Baltanás R. Strategies of the beetle Oochrotus unicolor (Tenebrionidae) thriving in the waste dumps of seed-harvesting Messor ants (Formicidae). Ecol Entomol. 2020;45:583–93.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)