• Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C. Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrog Energy. 2009;34:1370–6.

    CAS 
    Article 

    Google Scholar
     

  • Hay JXW, Wu TY, Juan JC, Md Jahim J. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin. 2013;7:334–52.

    CAS 
    Article 

    Google Scholar
     

  • Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009;139:244–60.

    CAS 
    Article 

    Google Scholar
     

  • Sinha P, Pandey A. An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrog Energy. 2011;36:7460–78.

    CAS 
    Article 

    Google Scholar
     

  • Das D, Veziroǧlu TN. Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy. 2001;26:13–28.

    CAS 
    Article 

    Google Scholar
     

  • Manish S, Banerjee R. Comparison of biohydrogen production processes. Int J Hydrog Energy. 2008;33:279–86.

    CAS 
    Article 

    Google Scholar
     

  • Rittmann SK, Lee HS, Lim JK, Kim TW, Lee JH, Kang SG. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity. Biotechnol Adv. 2015;33:165–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact. 2012;11:115.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ergal I, Fuchs W, Hasibar B, Thallinger B, Bochmann G, Rittmann SKMR. The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv. 2018;36:2165–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol. 2005;71:6762–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev. 2015;115:12936–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cotton CA, Claassens NJ, Benito-Vaquerizo S, Bar-Even A. Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol. 2019;62:168–80.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yishai O, Lindner SN, de la Gonzalez Cruz J, Tenenboim H, Bar-Even A. The formate bio-economy. Curr Opin Chem Biol. 2016;35:1–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drake HL, Küsel K, Matthies C. Acetogenic Prokaryotes. In: The Prokaryotes. Edited by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, vol. 2. New York: Springer; 2006: 373.

  • Moon J, Dönig J, Kramer S, Poehlein A, Daniel R, Müller V. Formate metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol. 2021;23:4214–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stephenson M, Stickland LH. Hydrogenase: a bacterial enzyme activating molecular hydrogen: the properties of the enzyme. Biochem J. 1931;25:205–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stephenson M, Stickland LH. Hydrogenlyases: Bacterial enzymes liberating molecular hydrogen. Biochem J. 1932;26:712–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev. 2001;25:175–243.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F. Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci USA. 2014;111:E3948–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu H, Wood TK. An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun. 2010;391:1033–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim S, Seol E, Oh Y-K, Wang GY, Park S. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains. Int J Hydrog Energy. 2009;34:7417–27.

    CAS 
    Article 

    Google Scholar
     

  • Kim JY, Jo BH, Cha HJ. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli. Microb Cell Fact. 2010;9:54.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Maeda T, Sanchez-Torres V, Wood TK. Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol. 2008;1:30–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maeda T, Sanchez-Torres V, Wood TK. Protein engineering of hydrogenase 3 to enhance hydrogen production. Appl Microbiol Biotechnol. 2008;79:77–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha SS, et al. Formate-driven growth coupled with H2 production. Nature. 2010;467:352–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lim JK, Mayer F, Kang SG, Müller V. Energy conservation by oxidation of formate to carbon dioxide and hydrogen via a sodium ion current in a hyperthermophilic archaeon. Proc Natl Acad Sci USA. 2014;111:11497–502.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mayer F, Lim JK, Langer JD, Kang SG, Müller V. Na+ transport by the A1AO-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes. J Biol Chem. 2015;290:6994–7002.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwarz FM, Schuchmann K, Müller V. Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalyst. Biotechnol Biofuels. 2018;11:237.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schuchmann K, Müller V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science. 2013;342:1382–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müller V. New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage. Trends Biotechnol. 2019;37:1344–54.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schwarz FM, Müller V. Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. Biotechnol Biofuels. 2020;13:32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwarz FM, Oswald F, Müller V. Acetogenic conversion of H2 and CO2 into formic acid and vice versa in a fed-batch-operated stirred-tank bioreactor. ACS Sustain Chem Eng. 2021;9:6810–20.

    CAS 
    Article 

    Google Scholar
     

  • Kottenhahn P, Schuchmann K, Müller V. Efficient whole cell biocatalyst for formate-based hydrogen production. Biotechnol Biofuels. 2018;11:93.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Scherer PA, Thauer RK. Purification and properties of reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum, a molybdenum iron-sulfur-protein. Eur J Biochem. 1978;85:125–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamamoto I, Saiki T, Liu SM, Ljungdahl LG. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem. 1983;258:1826–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang S, Huang H, Kahnt J, Müller AP, Köpke M, Thauer RK. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol. 2013;195:4373–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dietrich HM, Kremp F, Öppinger C, Ribaric L, Müller V. Biochemistry of methanol-dependent acetogenesis in Eubacterium callanderi KIST612. Environ Microbiol. 2021;23:4505–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kremp F, Poehlein A, Daniel R, Müller V. Methanol metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol. 2018;20:4369–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jain S, Dietrich HM, Müller V, Basen M. Formate is required for growth of the thermophilic acetogenic bacterium Thermoanaerobacter kivui lacking hydrogen-dependent carbon dioxide reductase (HDCR). Front Microbiol. 2020;11:59.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lim JK, Bae SS, Kim TW, Lee JH, Lee HS, Kang SG. Thermodynamics of formate-oxidizing metabolism and implications for H2 production. Appl Environ Microbiol. 2012;78:7393–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bae SS, Lee HS, Jeon JH, Lee JH, Kang SG, Kim TW. Enhancing bio-hydrogen production from sodium formate by hyperthermophilic archaeon, Thermococcus onnurineus NA1. Bioprocess Biosyst Eng. 2015;38:989–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jung HC, Lee SH, Lee SM, An YJ, Lee JH, Lee HS, Kang SG. Adaptive evolution of a hyperthermophilic archaeon pinpoints a formate transporter as a critical factor for the growth enhancement on formate. Sci Rep. 2017;7:6124.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Leo F, Schwarz FM, Schuchmann K, Müller V. Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO2 reduction to formate. Appl Microbiol Biotechnol. 2021;105:5861–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lipscomb GL, Schut GJ, Thorgersen MP, Nixon WJ, Kelly RM, Adams MW. Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex. J Biol Chem. 2014;289:2873–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl Microbiol Biotechnol. 2007;74:754–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weghoff MC, Müller V. CO metabolism in the thermophilic acetogen Thermoanaerobacter kivui. Appl Environ Microbiol. 2016;82:2312–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martins M, Mourato C, Pereira IA. Desulfovibrio vulgaris growth coupled to formate-driven H2 production. Environ Sci Technol. 2015;49:14655–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dolfing J, Jiang B, Henstra AM, Stams AJ, Plugge CM. Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl Environ Microbiol. 2008;74:6126–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hungate RE. A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology. Edited by Norris JR, Ribbons DW, vol. 3b. New York and London: Academic Press; 1969: 117–132.

  • Bryant MP. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972;25:1324–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leigh JA, Mayer F, Wolfe RS. Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol. 1981;129:275–80.

    CAS 
    Article 

    Google Scholar
     

  • Schmidt K, Liaaen-Jensen S, Schlegel HG. Die Carotinoide der Thiorhodaceae. Arch Mikrobiol. 1963;46:117–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schwarz FM, Ciurus S, Jain S, Baum C, Wiechmann A, Basen M, Müller V. Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui. Microb Biotechnol. 2020;13:2044–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wiechmann A, Ciurus S, Oswald F, Seiler VN, Müller V. It does not always take two to tango: “Syntrophy” via hydrogen cycling in one bacterial cell. ISME J. 2020;14:1561–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Katsyv A, Jain S, Basen M, Müller V. Electron carriers involved in autotrophic and heterotrophic acetogenesis in the thermophilic bacterium Thermoanaerobacter kivui. Extremophiles. 2021;25:513–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)