• Tan WL, Jain A, Takano A, Newell EW, Iyer NG, Lim WT, et al. Novel therapeutic targets on the horizon for lung cancer. Lancet Oncol. 2016;17(8):e347–e62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Negrao MV, Quek K, Zhang J, Sepesi B. TRACERx: Tracking tumor evolution to impact the course of lung cancer. J Thorac Cardiovasc Surg. 2018;155(3):1199–202.

    PubMed 
    Article 

    Google Scholar
     

  • Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yates LR, Campbell PJ. Evolution of the cancer genome. Nat Rev Genet. 2012;13(11):795–806.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quek K, Li J, Estecio M, Zhang J, Fujimoto J, Roarty E, et al. DNA methylation intratumor heterogeneity in localized lung adenocarcinomas. Oncotarget. 2017;8(13):21994–2002.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined histories. Immunity. 2020;52(1):55–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L, et al. Evolution of metastases in space and time under immune selection. Cell. 2018;175(3):751–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell. 2018;173(7):1755–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jimenez-Sanchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell. 2017;170(5):927–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shain AH, Bagger MM, Yu R, Chang D, Liu S, Vemula S, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet. 2019;51(7):1123–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Menzies AM, Yeh I, Botton T, Bastian BC, Scolyer RA, Long GV. Clinical activity of the MEK inhibitor trametinib in metastatic melanoma containing BRAF kinase fusion. Pigment Cell Melanoma Res. 2015;28(5):607–10.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sanborn JZ, Chung J, Purdom E, Wang NJ, Kakavand H, Wilmott JS, et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci U S A. 2015;112(35):10995–1000.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Favero F, Joshi T, Marquard AM, Birkbak NJ, Krzystanek M, Li Q, et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann Oncol. 2015;26(1):64–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. New Engl J Med. 2017;376(22):2109–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 2008;36:W509–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lundegaard C, Lund O, Nielsen M. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics. 2008;24(11):1397–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One. 2007;2(8):e796.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Turker MS. The establishment and maintenance of DNA methylation patterns in mouse somatic cells. Semin Cancer Biol. 1999;9(5):329–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Meyer T, Bady P, Trooskens G, Kurscheid S, Bloch J, Kros JM, et al. Genome-wide DNA methylation detection by MethylCap-seq and Infinium HumanMethylation450 BeadChips: an independent large-scale comparison. Sci Rep. 2015;5:15375.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell. 2018;33(4):721–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chakravarthy A, Furness A, Joshi K, Ghorani E, Ford K, Ward MJ, et al. Pan-cancer deconvolution of tumour composition using DNA methylation. Nat Commun. 2018;9(1):3220.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood. 2009;114(19):4099–107.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carlson CS, Emerson RO, Sherwood AM, Desmarais C, Chung MW, Parsons JM, et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat Commun. 2013;4:2680.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Robins H, Desmarais C, Matthis J, Livingston R, Andriesen J, Reijonen H, et al. Ultra-sensitive detection of rare T cell clones. J Immunol Methods. 2012;375(1–2):14–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cha E, Klinger M, Hou Y, Cummings C, Ribas A, Faham M, et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med. 2014;6(238):238ra70.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Reuben A, Gittelman R, Zhang J, Chen R, Quek K, Vence L, et al. OA 13.05 Immune, molecular and T cell repertoire landscape of 235 resected non-small cell lung cancers and paired normal lung tissues. J Thorac Oncol. 2017;12(11):S1780.

    Article 

    Google Scholar
     

  • Gil Del Alcazar CR, Alečković M, Polyak K. Immune escape during breast tumor progression. Cancer Immunol Res. 2020;8(4):422–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walker R, Poleszczuk J, Pilon-Thomas S, Kim S, Anderson A, Czerniecki BJ, et al. Immune interconnectivity of anatomically distant tumors as a potential mediator of systemic responses to local therapy. Sci Rep. 2018;8(1):9474.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Reuben A, Gittelman R, Gao J, Zhang J, Yusko EC, Wu CJ, et al. TCR repertoire intratumor heterogeneity in localized lung adenocarcinomas: an association with predicted neoantigen heterogeneity and postsurgical recurrence. Cancer Discov. 2017;7(10):1088–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baras AS, Drake C, Liu J-J, Gandhi N, Kates M, Hoque MO, et al. The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology. 2016;5(5):e1134412.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jordanova ES, Gorter A, Ayachi O, Prins F, Durrant LG, Kenter GG, et al. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res. 2008;14(7):2028–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, et al. Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A. 2014;111(36):13139–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host–tumor cell interactions during hematogenous dissemination. Cancer Discov. 2012;2(12):1091–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kitamura T, Qian B-Z, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robert L, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res. 2014;20(9):2424–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reuben A, Gittelman R, Zhang J, Quek K, Vence LM, Behrens C, et al. Association of the T-cell receptor landscape with survival in non-small cell lung cancer. J Clin Oncol. 2018;36(5):140.

    Article 

    Google Scholar
     

  • Chiou S-H, Tseng D, Reuben A, Mallajosyula V, Molina IS, Conley S, et al. Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity. 2021;54(3):586–602.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reuben A, Zhang J, Chiou SH, Gittelman RM, Li J, Lee WC, et al. Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nat Commun. 2020;11(1):603.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Simoni Y, Becht E, Fehlings M, Loh CY, Koo S-L, Teng KWW, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557(7706):575–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MA, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25(1):89–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee WC, Reuben A, Hu X, McGranahan N, Chen R, Jalali A, et al. Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity. Genome Biol. 2020;21(1):271.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hong L, Negrao MV, Dibaj SS, Chen R, Reuben A, Bohac JM, et al. Programmed death-ligand 1 heterogeneity and its impact on benefit from immune checkpoint inhibitors in NSCLC. J Thorac Oncol. 2020;15(9):1449–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Y, Zhang J, Li L, Yin G, Zhang J, Zheng S, et al. Genomic heterogeneity of multiple synchronous lung cancer. Nat Commun. 2016;7:13200.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim R, Keam B, Kim S, Kim M, Kim SH, Kim JW, et al. Differences in tumor microenvironments between primary lung tumors and brain metastases in lung cancer patients: therapeutic implications for immune checkpoint inhibitors. BMC Cancer. 2019;19(1):19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vignot S, Frampton GM, Soria JC, Yelensky R, Commo F, Brambilla C, et al. Next-generation sequencing reveals high concordance of recurrent somatic alterations between primary tumor and metastases from patients with non-small-cell lung cancer. J Clin Oncol. 2013;31(17):2167–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leong TL, Gayevskiy V, Steinfort DP, De Massy MR, Gonzalez-Rajal A, Marini KD, et al. Deep multi-region whole-genome sequencing reveals heterogeneity and gene-by-environment interactions in treatment-naive, metastatic lung cancer. Oncogene. 2019;38(10):1661–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheung KJ, Ewald AJ. A collective route to metastasis: Seeding by tumor cell clusters. Science. 2016;352(6282):167–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heyde A, Reiter JG, Naxerova K, Nowak MA. Consecutive seeding and transfer of genetic diversity in metastasis. Proc Natl Acad U S A. 2019;116(28):14129–37.

    CAS 
    Article 

    Google Scholar
     

  • Reuben A, Spencer CN, Prieto PA, Gopalakrishnan V, Reddy SM, Miller JP, et al. Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ Genom Med. 2017;2:10.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Becerra MF, Reznik E, Redzematovic A, Tennenbaum DM, Kashan M, Ghanaat M, et al. Comparative genomic profiling of matched primary and metastatic tumors in renal cell carcinoma. Eur Urol Focus. 2018;4(6):986–94.

    PubMed 
    Article 

    Google Scholar
     

  • Lim B, Mun J, Kim JH, Kim CW, Roh SA, Cho DH, et al. Genome-wide mutation profiles of colorectal tumors and associated liver metastases at the exome and transcriptome levels. Oncotarget. 2015;6(26):22179–90.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1(2):239–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park C, Jeong K, Park JH, Jung S, Bae JM, Kim K, et al. Pan-cancer methylation analysis reveals an inverse correlation of tumor immunogenicity with methylation aberrancy. Cancer Immunol Immunother. 2021;70(6):1605–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu X, Estecio MR, Chen R, Reuben A, Wang L, Fujimoto J, et al. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat Commun. 2021;12(1):687.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dejima H, Hu X, Chen R, Zhang J, Fujimoto J, Parra ER, et al. Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features. Nat Commun. 2021;12(1):2722.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosenthal R, Cadieux EL, Salgado R, Al Bakir M, Moore DA, Hiley CT, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567(7749):479–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu M, Zhou J, Chen Z, Cheng AS. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol. 2017;241(1):10–24.

    PubMed 
    Article 

    Google Scholar
     

  • Jung H, Kim HS, Kim JY, Sun JM, Ahn JS, Ahn MJ, et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat Commun. 2019;10(1):4278.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355(6322):eaaf8399.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Parry L, Clarke AR. The roles of the methyl-CpG binding proteins in cancer. Genes Cancer. 2011;2(6):618–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M. A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res. 2006;66(17):8342–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coit P, Dozmorov MG, Merrill JT, McCune WJ, Maksimowicz-McKinnon K, Wren JD, et al. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-Th1 effector T cell immune response as an early event in lupus flares. Arthritis Rheum. 2016;68(9):2200–9.

    CAS 
    Article 

    Google Scholar
     

  • O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010;327(5969):1098–102.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee GR, Kim ST, Spilianakis CG, Fields PE, Flavell RA. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity. 2006;24(4):369–79.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caiafa P, Zampieri M. DNA methylation and chromatin structure: the puzzling CpG islands. J Cell Biochem. 2005;94(2):257–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hughes T, Webb R, Fei Y, Wren J, Sawalha A. DNA methylome in human CD4+ T cells identifies transcriptionally repressive and non-repressive methylation peaks. Genes Immun. 2010;11(7):554–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bam M, Chintala S, Fetcko K, Williamsen BC, Siraj S, Liu S, et al. Genome wide DNA methylation landscape reveals glioblastoma’s influence on epigenetic changes in tumor infiltrating CD4+ T cells. Oncotarget. 2021;12(10):967–81.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hsiue EH-C, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, et al. Targeting a neoantigen derived from a common TP53 mutation. Science. 2021;371(6533):eabc8697.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee W-C, Reuben A, Hu X, McGranahan N, Chen R, Jalali A, et al. Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity. Genome Biol. 2020;21(1):271.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nong J, Gong Y, Guan Y, Yi X, Yi Y, Chang L, et al. Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer. Nat Commun. 2018;9(1):3114.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lam VK, Zhang J, Wu CC, Tran HT, Li L, Diao L, et al. Genotype-specific differences in circulating tumor DNA levels in advanced NSCLC. J Thorac Oncol. 2021;16(4):601–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)