• Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology. Nature Publishing Group; 2015. p. 42–51. https://doi.org/10.1038/nrmicro3380.

  • Loureiro RJ, Roque F, Teixeira Rodrigues A, Herdeiro MT, Ramalheira E. Use of antibiotics and bacterial resistances: Brief notes on its evolution. Revista Portuguesa de Saude Publica [Internet]. Ediciones Doyma, S.L.; 2016 [cited 2022 Mar 8];34:77–84. https://doi.org/10.1016/j.rpsp.2015.11.003

  • Seveno NA, Kallifidas D, Smalla K, Dirk Van Elsas J, Collard J-M, Karagouni AD, et al. Occurrence and reservoirs of antibiotic resistance genes in the environment. 2002. (http://journals.lww.com/revmedmicrobiol).

    Book 

    Google Scholar
     

  • Oliveira R de, Maruyama SAT. Controle de infecção hospitalar: histórico e papel do estado. Revista Eletrônica de Enfermagem [Internet]. Universidade Federal de Goias; 2008 [cited 2022 Mar 8];10. Available from: https://revistas.ufg.br/fen/article/view/46642

  • Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol. 2019;10:539 (Frontiers Media S.A).

    Article 

    Google Scholar
     

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27 (Elsevier).

    Article 

    Google Scholar
     

  • Guilhelmelli F, Vilela N, Albuquerque P, da S Derengowski L, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353.

    Article 

    Google Scholar
     

  • dos Santos L, Hochheim S, Boeder AM, Kroger A, Tomazzoli MM, Dal Pai Neto R, et al. Caracterización química, antioxidante, actividad citotóxica y antibacteriana de extractos de propóleos y compuestos aislados de las abejas sin aguijón brasileñas Melipona quadrifasciata y Tetragonisca angustula. J Apicultural Res. 2017;56:543–58 (Taylor and Francis Ltd).

    Article 

    Google Scholar
     

  • Cambronero-Heinrichs JC, Matarrita-Carranza B, Murillo-Cruz C, Araya-Valverde E, Chavarría M, Pinto-Tomás AA. Phylogenetic analyses of antibiotic-producing Streptomyces sp. isolates obtained from the stingless-bee Tetragonisca angustula (Apidae: Meliponini). Microbiology (United Kingdom). 2019;165:292–301 (Microbiology Society).

    CAS 

    Google Scholar
     

  • Torres AR, Sandjo LP, Friedemann MT, Tomazzoli MM, Maraschin M, Mello CF, et al. Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from melipona quadrifasciata quadrifasciata and tetragonisca angustula stingless bees. Braz J Med Biol Res. 2018;51:e7118 (Associacao Brasileira de Divulgacao Cientifica).

    CAS 
    Article 

    Google Scholar
     

  • Akhir RAM, Bakar MFA, Sanusi SB. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts. AIP Conference Proceedings. American Institute of Physics Inc.; 2017. https://doi.org/10.1063/1.5005423.

  • de Paula GT, Menezes C, Pupo MT, Rosa CA. Stingless bees and microbial interactions. Current Opinion in Insect Science. Elsevier Inc.; 2021. p. 41–7. https://doi.org/10.1016/j.cois.2020.11.006.

  • Dillon RJ, Dillon VM. THE GUT BACTERIA OF INSECTS: Nonpathogenic Interactions. https://doi.org/10.1146/annurev.ento49061802123416 [Internet]. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA ; 2003 [cited 2022 Mar 8];49:71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416

  • Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E, Raddadi N, et al. Gut microbiome dysbiosis and honeybee health. J Appl Entomol [Internet]. 2011;135:524–33. https://doi.org/10.1111/j.1439-0418.2010.01609.x (John Wiley & Sons, Ltd cited 2022 Mar 8).

    Article 

    Google Scholar
     

  • Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, et al. Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PLOS ONE [Internet]. 2012;7:e33188. https://doi.org/10.1371/journal.pone.0033188 (Public Library of Science cited 2022 Mar 8).

    CAS 
    Article 

    Google Scholar
     

  • Ulasan S, BakteriaDenganKelulut P, SyazwanNgalimat M, Noor R, Raja Z, Rahman A, et al. A Review on the Association of Bacteria with Stingless Bees. Sains Malays [Internet]. 2020;49:1853–63. https://doi.org/10.17576/jsm-2020-4908-08 (cited 2022 Mar 8).

    CAS 
    Article 

    Google Scholar
     

  • Martin FPJ, Wang Y, Sprenger N, Yap IKS, Lundstedt T, Lek P, et al. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol [Internet]. 2008;4:157. https://doi.org/10.1038/msb4100190 (John Wiley & Sons, Ltd cited 2022 Mar 8).

    CAS 
    Article 

    Google Scholar
     

  • Mazmanian SK, Cui HL, Tzianabos AO, Kasper DL. An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell Cell Press. 2005;122:107–18.

    CAS 

    Google Scholar
     

  • Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A. Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends Microbiol. 2019;27(12):1034–44 (Elsevier Ltd).

    CAS 
    Article 

    Google Scholar
     

  • Menezes C, Vollet-Neto A, Fonseca VLI. An advance in the in vitro rearing of stingless bee queens. Apidologie [Internet]. 2013;44:491–500. https://doi.org/10.1007/s13592-013-0197-6 (Springer cited 2022 Mar 8).

    Article 

    Google Scholar
     

  • Menezes C, Vollet-Neto A, Marsaioli AJ, Zampieri D, Fontoura IC, Luchessi AD, et al. A Brazilian Social Bee Must Cultivate Fungus to Survive. Curr Biol. 2015;25:2851–5 (Cell Press).

    CAS 
    Article 

    Google Scholar
     

  • Paludo CR, Pishchany G, Andrade-Dominguez A, Silva-Junior EA, Menezes C, Nascimento FS, et al. Microbial community modulates growth of symbiotic fungus required for stingless bee metamorphosis. PLoS ONE. 2019;14:e0219696 (Public Library of Science).

    CAS 
    Article 

    Google Scholar
     

  • Ngalimat MS, Abd Rahman RNZR, Yusof MT, Amir Hamzah AS, Zawawi N, Sabri S. A review on the association of bacteria with stingless bees. Sains Malays. Penerbit Universiti Kebangsaan Malaysia; 2020. p. 1853–63. http://dx.doi.org/10.17576/jsm-2020-4908-08.

  • Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N. Probiotic properties of bacteria isolated from bee bread of stingless bee Heterotrigona itama. J Apicultural Res. 2020;60(1):172–87 (Taylor and Francis Ltd).

    Article 

    Google Scholar
     

  • Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791 (Frontiers Research Foundation).

    Article 

    Google Scholar
     

  • Banin E, Hughes D, Kuipers OP. Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol Rev. 2017;41:450–2 (Oxford University Press).

    CAS 
    Article 

    Google Scholar
     

  • Gholizadeh P, Köse Ş, Dao S, Ganbarov K, Tanomand A, Dal T, et al. How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance. Infect Drug Resist [Internet]. 2020;13:1111 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182461/ Dove Press cited 2022 Mar 8).

    Article 

    Google Scholar
     

  • Ma YX, Wang CY, Li YY, Li J, Wan QQ, Chen JH, et al. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. Adv Sci [Internet]. 2020;7:1901872. https://doi.org/10.1002/advs.201901872 (John Wiley & Sons, Ltd cited 2022 Mar 8).

    CAS 
    Article 

    Google Scholar
     

  • Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9:281 (Frontiers Media S.A).

    Article 

    Google Scholar
     

  • Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res Int. 2016;2016:2475067 (Hindawi Limited).

    Article 

    Google Scholar
     

  • GrotoBarreiras D, Montanari Ruiz F, Erick Galindo Gomes J, de Maria Salotti Souza B. Eficácia da ação antimicrobiana do extrato de própolis de abelha jataí (Tetragonisca angustula) em bactérias Gram-positivas e Gram-negativas. Caderno de Ciências Agrárias [Internet]. 2020;12:1–5 (https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15939 Universidade Federal de Minas Gerais – Pro-Reitoria de Pesquisa cited 2022 Mar 8).


    Google Scholar
     

  • Carneiro ALB, Gomes AA, da AlvesSilva L, Alves LB, da CardosoSilva E, da Silva Pinto AC, et al. Antimicrobial and Larvicidal Activities of Stingless Bee Pollen from Maues, Amazonas, Brazil. Bee World. 2019;96:98–103.

    Article 

    Google Scholar
     

  • Rodríguez-Hernández D, Melo WGP, Menegatti C, Lourenzon VB, do Nascimento FS, Pupo MT. Actinobacteria associated with stingless bees biosynthesize bioactive polyketides against bacterial pathogens. New J Chem. 2019;43:10109–17 (Royal Society of Chemistry).

    Article 

    Google Scholar
     

  • Silva AC, da Paulo MC S, Silva MJO, Machado RS, de Rocha GM M, de Oliveira GAL. Antimicrobial activity and toxicity of stingless honey hives Melipona rufiventris and Melipona fasciculata: a review. Res Soc Dev [Internet]. 2020;9:e897986325–e897986325.

    Article 

    Google Scholar
     

  • Gilliam M, Roubik DW, Lorenz BJ. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie [Internet]. 1990;21:89–97. https://doi.org/10.1051/apido:19900201 (EDP Sciences cited 2022 Mar 8).

    Article 

    Google Scholar
     

  • Souza ECA, Menezes C, Flach A. Stingless bee honey (Hymenoptera, Apidae, Meliponini): a review of quality control, chemical profile, and biological potential. Apidologie. 2021;52:113–32 (Springer-Verlag Italia s.r.l).

    Article 

    Google Scholar
     

  • Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines Against Antimicrobial Resistance. Front Immunol. 2020;11:1048 (Frontiers Media S.A).

    CAS 
    Article 

    Google Scholar
     

  • Tenório EG, Alves NF, Mendes BEP. Antimicrobial activity of honey of africanized bee (Apis mellifera) and stingless bee, tiuba (Melipona fasciculata) against strains of Escherichia coli, Pseudomona aeruginosa and Staphylococcus aureus. AIP Conference Proceedings. American Institute of Physics Inc.; 2017. https://doi.org/10.1063/1.5012412.

  • Clébis VH, Nishio EK, Scandorieiro S, Victorino VJ, Panagio LA, de Oliveira AG, et al. Antibacterial effect and clinical potential of honey collected from Scaptotrigona bipunctata Lepeletier (1836) and Africanized bees Apis mellifera Latreille and their mixture. https://doi.org/10.1080/0021883920191681118 [Internet]. Taylor & Francis; 2019 [cited 2022 Mar 8];60:308–18. https://doi.org/10.1080/00218839.2019.1681118

  • Kenji Nishio E, Carolina Bodnar G, Regina Eches Perugini M, Cornélio Andrei C, Aparecido Proni E, Katsuko Takayama Kobayashi R, et al. Antibacterial activity of honey from stingless bees Scaptotrigona bipunctata Lepeletier, 1836 and S. postica Latreille, 1807 (Hymenoptera: Apidae: Meliponinae) against methicillin-resistant Staphylococcus aureus (MRSA). https://doi.org/10.1080/0021883920161162985 [Internet]. Taylor & Francis; 2016 [cited 2022 Mar 8];54:452–60. https://doi.org/10.1080/00218839.2016.1162985

  • Nishio EK, Ribeiro JM, Oliveira AG, Andrade CGTJ, Proni EA, Kobayashi RKT, et al. Antibacterial synergic effect of honey from two stingless bees: Scaptotrigona bipunctata Lepeletier, 1836, and S postica Latreille, 1807. Sci Rep [Internet]. 2016;6:1–8 (https://www.nature.com/articles/srep21641 cited 2022 Mar 8).

    Article 

    Google Scholar
     

  • Villacrés-Granda I, Coello D, Proaño A, Ballesteros I, Roubik DW, Jijón G, et al. Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT. 2021;140:110737 (Academic Press).

    Article 

    Google Scholar
     

  • Jenkins R, Burton N, Cooper R. Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. J Antimicrob Chemother [Internet]. 2014;69:603–15 (https://academic.oup.com/jac/article/69/3/603/786564 Oxford Academic cited 2022 Mar 8).

    CAS 
    Article 

    Google Scholar
     

  • Baharudin MMAA, Ngalimat MS, Shariff FM, Yusof ZNB, Karim M, Baharum SN, et al. Antimicrobial activities of Bacillus velezensis strains isolated from stingless bee products against methicillin-resistant Staphylococcus aureus. PLOS ONE [Internet]. 2021;16:e0251514. https://doi.org/10.1371/journal.pone.0251514 (Public Library of Science cited 2022 Mar 8).

    CAS 
    Article 

    Google Scholar
     

  • Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107 (Frontiers Media S.A).

    Article 

    Google Scholar
     

  • Wang Y, Rozen DE. Gut microbiota colonization and transmission in the burying beetle Nicrophorus vespilloides throughout development. Appl Environ Microbiol [Internet]. 2017;83:e03250-16. https://doi.org/10.1128/AEM.03250-16 (American Society for Microbiology).

    CAS 
    Article 

    Google Scholar
     

  • Clements T, Ndlovu T, Khan W. Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiol Res. 2019;229:126329 (Urban & Fischer).

    CAS 
    Article 

    Google Scholar
     

  • de Sousa LP. Bacterial communities of indoor surface of stingless bee nests. PLOS ONE [Internet]. 2021;16:e0252933. https://doi.org/10.1371/journal.pone.0252933 (Public Library of Science cited 2022 Mar 8).

    CAS 
    Article 

    Google Scholar
     

  • Feliatra F, Batubara UM, Nurulita Y, Lukistyowati I, Setiaji J. The potentials of secondary metabolites from Bacillus cereus SN7 and Vagococcus fluvialis CT21 against fish pathogenic bacteria. Microb Pathog. 2021;158:105062 (Academic Press).

    CAS 
    Article 

    Google Scholar
     

  • Zhu M, Tse MW, Weller J, Chen J, Blainey PC. The future of antibiotics begins with discovering new combinations. Ann N Y Acad Sci [Internet]. 2021;1496:82–96. https://doi.org/10.1111/nyas.14649 (John Wiley & Sons, Ltd cited 2022 Mar 8).

    Article 

    Google Scholar
     

  • Torimiro N, Moshood A, Eyiolawi S. Analysis of Beta-lactamase production and Antibiotics resistance in Staphylococcus aureus strains. J Infect Dis Immun [Internet]. 2013;5:24–8 (https://academicjournals.org/journal/JIDI/article-abstract/DF707E55786 Academic Journals cited 2022 Mar 8).

    Article 

    Google Scholar
     

  • O’Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol. 2011;22:552–8 (Elsevier Current Trends).

    Article 

    Google Scholar
     

  • Qian C, Liu H, Cao J, Ji Y, Lu W, Lu J, et al. Identification of floR Variants Associated With a Novel Tn4371-Like Integrative and Conjugative Element in Clinical Pseudomonas aeruginosa Isolates. Front Cell Infect Microbiol. 2021;11:542 (Frontiers Media S.A).

    Article 

    Google Scholar
     

  • Langendonk RF, Neill DR, Fothergill JL. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front Cell Infect Microbiol. 2021;11:307 (Frontiers Media S.A).

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)