• Culver J, Lindbeck A, Dawson W. Virus-host interactions: induction of chlorotic and necrotic responses in plants by tobamoviruses. Annu Rev Phytopathol. 1991;29(1):193–217.

    Article 

    Google Scholar
     

  • Ryslava H, Muller K, Semoradova S, Synkova H, Cerovska N. Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by potato virus a and potato virus Y. Photosynthetica. 2003;41(3):357–63.

    CAS 
    Article 

    Google Scholar
     

  • Navarrete I, Panchi N, Kromann P, Forbes GA, Andrade-Piedra JL. Health quality of seed potato and yield losses in Ecuador. BioRxiv. 2017. https://doi.org/10.1101/108712.

  • Akhter M, Nakahara KS, Masuta C. Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. Virol J. 2021;18(1):1–12.

    Article 
    CAS 

    Google Scholar
     

  • Baebler S, Coll A, Gruden K. Plant molecular responses to potato virus Y: a continuum of outcomes from sensitivity and tolerance to resistance. Viruses. 2020;12(2):217.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robaglia C, Caranta C. Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 2006;11(1):40–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matthews REF. Factors influencing the course of infection and disease. In: MATTHEWS REF, editor. Plant virology. 2nd ed. New York: Academic Press; 1981. p. 427–53.

    Chapter 

    Google Scholar
     

  • Zaitlin M, Hull R. Plant virus-host interactions. Annu Rev Plant Physiol. 1987;38(1):291–315.

    Article 

    Google Scholar
     

  • Garcia-Ruiz H. Susceptibility genes to plant viruses. Viruses. 2018;10(9):484.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schmitt-Keichinger C. Manipulating cellular factors to combat viruses: a case study from the plant eukaryotic translation initiation factors eIF4. Front Microbiol. 2019;10:17.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Keane P. Horizontal or generalized resistance to pathogens in plants. In: Christian Joseph Cumagun CJ, editor. Plant pathology. Rijeka: InTech; 2012. p. 327–62.


    Google Scholar
     

  • Huang Y-J, Mitrousia GK, Sidique SNM, Qi A, Fitt BD. Combining R gene and quantitative resistance increases effectiveness of cultivar resistance against Leptosphaeria maculans in Brassica napus in different environments. PLoS One. 2018;13(5):e0197752.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, et al. Prospects of understanding the molecular biology of disease resistance in rice. Int J Mol Sci. 2018;19(4):1141.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ishihara T, Sekine KT, Hase S, Kanayama Y, Seo S, Ohashi Y, et al. Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses. Plant Biol. 2008;10(4):451–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wally O, Punja ZK. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM crops. 2010;1(4):199–206.

    PubMed 
    Article 

    Google Scholar
     

  • He G, Zhang Z, Sathanantham P, Zhang X, Wu Z, Xie L, et al. An engineered mutant of a host phospholipid synthesis gene inhibits viral replication without compromising host fitness. J Biol Chem. 2019;294(38):13973–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Satheesh LS, Murugan K. Antimicrobial activity of protease inhibitor from leaves of Coccinia grandis (L.) Voigt. Indian J Exper Biol (IJEB). 2011;49(05):366–74.

    CAS 

    Google Scholar
     

  • Menon V, Rao M. Protease inhibitors: emphasizing functional aspects of aspartic protease inhibitors. Funct Plant Sci Biotechnol. 2012;6(2):1–67.


    Google Scholar
     

  • Dunaevsky YE, Elpidina E, Vinokurov K, Belozersky M. Protease inhibitors in improvement of plant resistance to pathogens and insects. Mol Biol. 2005;39(4):608–13.

    CAS 
    Article 

    Google Scholar
     

  • Quilis J, Meynard D, Vila L, Avilés FX, Guiderdoni E, San SB. A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnol J. 2007;5(4):537–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Quilis J, López-García B, Meynard D, Guiderdoni E, San SB. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J. 2014;12(3):367–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim MA. The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat Biotechnol. 1999;17(12):1223–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stewart K, Goldman RC, Abad-Zapatero C. The secreted proteinases from Candida: challenges for structure-aided drug design. In: Dunn BM, Editor. Proteases of infectious agents. Cambridge: Academic Press; 1999. p. 117-38.

  • Cater SA, Lees WE, Hill J, Brzin J, Kay J, Phylip LH. Aspartic proteinase inhibitors from tomato and potato are more potent against yeast proteinase a than cathepsin D. Biochim Biophys Acta. 2002;1596(1):76–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chung BY-W, Miller WA, Atkins JF, Firth AE. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci. 2008;105(15):5897–902.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yilmaz NK, Swanstrom R, Schiffer CA. Improving viral protease inhibitors to counter drug resistance. Trends Microbiol. 2016;24(7):547–57.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, et al. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985;313(6000):277–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Von der Helm K. Retroviral proteases: structure, function and inhibition-from a non-anticipated viral enzyme to the target of a most promising HIV therapy. Biol Chem. 1996;377:765–74.

    PubMed 

    Google Scholar
     

  • Keilova H, Tomášek V. Isolation and some properties of cathepsin D inhibitor from potatoes. Collect Czechoslov Chem Commun. 1976;41(2):489–97.

    CAS 
    Article 

    Google Scholar
     

  • Osmani Z, Sabet MS, Shams-Bakhsh M, Moieni A, Vahabi K. Virus-specific and common transcriptomic responses of potato (Solanum tuberosum) against PVY, PVA and PLRV using microarray meta-analysis. Plant Breed. 2019;138(2):216–28.

    CAS 
    Article 

    Google Scholar
     

  • Ryan CA. The search for the proteinase inhibitor-inducing factor, PIIF. Plant Mol Biol. 1992;19(1):123–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dzhavakhiya V, Ozeretskovskaya O, Zinovyeva S. Immune response. In: Dyakov YuT, Dzhavakhiya VG, Korpela T, editors. Comprehensive and molecular phytopathology. Amsterdam: Elsevier; 2007. p. 265-314.

  • Overmyer K, Vuorinen K, Brosché M. Interaction points in plant stress signaling pathways. Physiol Plant. 2018;162(2):191–204.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ku Y-S, Sintaha M, Cheung M-Y, Lam H-M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci. 2018;19(10):3206.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rejeb IB, Pastor V, Mauch-Mani B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants. 2014;3(4):458–75.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sewelam N, Kazan K, Schenk PM. Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci. 2016;7:187.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ghosh P, Bhattacharya A, Char B. Manipulating disease and pest resistance pathways in plants for enhanced crop improvement. Biosci Biotechnol Res Commun. 2017;10(4):631–44.

    Article 

    Google Scholar
     

  • Gurr SJ, Rushton PJ. Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol. 2005;23(6):283–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi W, Hao L, Li J, Liu D, Guo X, Li H. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep. 2014;33(3):483–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li J-b, Luan Y-s, Yin Y-l. SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene. 2014;547(1):145–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tiwari LD, Mittal D, Mishra RC, Grover A. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants. Plant Physiol Biochem. 2015;92:48–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khadeeva N, Kochieva E, Tcherednitchenko MY, Yakovleva EY, Sydoruk K, Bogush V, et al. Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress. Biochem Mosc. 2009;74(3):260–7.

    CAS 
    Article 

    Google Scholar
     

  • Srinivasan T, Kumar KRR, Kirti PB. Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol. 2009;50(3):541–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jarosova J, Kundu JK. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010;10(1):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Bhullar S, Chakravarthy S, Pental D, Burma PK. Analysis of promoter activity in transgenic plants by normalizing expression with a reference gene: anomalies due to the influence of the test promoter on the reference promoter. J Biosci. 2009;34(6):953–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Osmani Z, Sabet MS, Nakahara KS, Mokhtassi-Bidgoli A, Vahabi K, Moieni A, et al. Identification of a defense response gene involved in signaling pathways against PVA and PVY in potato. GM Crops Food. 2021;12(1):86–105.

    PubMed 
    Article 

    Google Scholar
     

  • Blackwood EM, Kadonaga JT. Going the distance: a current view of enhancer action. Science. 1998;281(5373):60–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bulger M, Groudine M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 1999;13(19):2465–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calhoun VC, Stathopoulos A, Levine M. Promoter-proximal tethering elements regulate enhancer-promoter specificity in the Drosophila Antennapedia complex. Proc Natl Acad Sci. 2002;99(14):9243–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hatzis P, Talianidis I. Dynamics of enhancer-promoter communication during differentiation-induced gene activation. Mol Cell. 2002;10(6):1467–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weijschede J, Berentsen R, de Kroon H, Huber H. Variation in petiole and internode length affects plant performance in Trifolium repens under opposing selection regimes. Evol Ecol. 2008;22(3):383–97.

    Article 

    Google Scholar
     

  • Carvalho S, Heuvelink E, Cascais R, Van Kooten O. Effect of day and night temperature on internode and stem length in chrysanthemum: is everything explained by DIF? Ann Bot. 2002;90(1):111–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Timlin D, Lutfor Rahman S, Baker J, Reddy V, Fleisher D, Quebedeaux B. Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agron J. 2006;98(5):1195–203.

    Article 

    Google Scholar
     

  • Prange RK, McRae KB, Midmore DJ, Deng R. Reduction in potato growth at high temperature: role of photosynthesis and dark respiration. Am Potato J. 1990;67(6):357.

    Article 

    Google Scholar
     

  • Jefferies R. Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum). Physiol Plant. 1994;90(1):93–7.

    CAS 
    Article 

    Google Scholar
     

  • Lehrer AT, Moore PH, Komor E. Impact of sugarcane yellow leaf virus (SCYLV) on the carbohydrate status of sugarcane: comparison of virus-free plants with symptomatic and asymptomatic virus-infected plants. Physiol Mol Plant Pathol. 2007;70(4–6):180–8.

    CAS 
    Article 

    Google Scholar
     

  • Pazarlar S, Gumus M, Oztekin GB. The effects of tobacco mosaic virus infection on growth and physiological parameters in some pepper varieties (Capsicum annuum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2013;41(2):427–33.

    Article 

    Google Scholar
     

  • Perez-Bueno ML, Pineda M, Baron AM. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front Plant Sci. 2019;10:1135.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang L, Poque S, Valkonen JP. Phenotyping viral infection in sweetpotato using a high-throughput chlorophyll fluorescence and thermal imaging platform. Plant Methods. 2019;15(1):116.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guidi L, Lo Piccolo E, Landi M. Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front Plant Sci. 2019;10:174.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akilan S, Halima TH, Sasi S, Kappachery S, Baniekal-Hiremath G, Venkatesh J, et al. Evaluation of osmotic stress tolerance in transgenic Arabidopsis plants expressing Solanum tuberosum D200 gene. J Plant Interact. 2019;14(1):79–86.

    CAS 
    Article 

    Google Scholar
     

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 2004;23(4):980–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim J-Y, Park S-C, Hwang I, Cheong H, Nah J-W, Hahm K-S, et al. Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci. 2009;10(6):2860–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol. 1999;2(4):280–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hartl M, Giri AP, Kaur H, Baldwin IT. The multiple functions of plant serine protease inhibitors: defense against herbivores and beyond. Plant Signal Behav. 2011;6(7):1009–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jorgensen M, Bauw G, Welinder KG. Molecular properties and activities of tuber proteins from starch potato cv. Kuras. J Agric Food Chemistry. 2006;54(25):9389–97.

    CAS 
    Article 

    Google Scholar
     

  • Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell. 1999;11(3):431–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riechmann JL, Laín S, García JA. Highlights and prospects of potyvirus molecular biology. J Gen Virol. 1992;73(1):1–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murashige T, Skoog F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.

    CAS 
    Article 

    Google Scholar
     

  • Sambrook J, Russell D. Molecular cloning a laboratory manual, vol. 435. New York: 434 Cold spring Harbor; 2001.


    Google Scholar
     

  • Nicot N, Hausman J-F, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005;56(421):2907–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clark MF, Adams A. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol. 1977;34(3):475–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar A, Rao A. Double-antibody sandwich ELISA for detection of infectious bursal disease virus. Br Vet J. 1991;147(3):251–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gearing LJ, Cumming HE, Chapman R, Finkel AM, Woodhouse IB, Luu K, et al. CiiiDER: a tool for predicting and analysing transcription factor binding sites. PLoS One. 2019;14(9):e0215495.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duncan DB. Multiple range and multiple F tests. Biometrics. 1955;11(1):1–42.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)