• Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev. 2021;96(5):2058–112.

    PubMed 
    Article 

    Google Scholar
     

  • O’Connor JK. The trophic habits of early birds. Palaeogeogr Palaeoclimatol Palaeoecol. 2019;513:178–95.

    Article 

    Google Scholar
     

  • O’Connor JK, Zhou Z. The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology. 2019;63:13–27.

    Article 

    Google Scholar
     

  • Pittman M, O’Connor J, Field DJ, Turner AH, Ma W, Makovicky PJ, et al. Pennaraptoran systematics. In: Pittman M, Xu X, editors. Pennaraptoran theropod dinosaurs: past progress and new frontiers. New York: Bulletin of the American Museum of Natural History; 2020. p. 7–36.


    Google Scholar
     

  • Sanz JL, Chiappe LM, Pérez-Moreno BP, Buscalioni AD, Moratalla JJ, Ortega F, et al. An Early Cretaceous bird from Spain and its implications for the evolution of avian flight. Nature. 1996;382(6590):442.

    CAS 
    Article 

    Google Scholar
     

  • Pittman M, O’Connor J, Tse E, Makovicky PJ, Field DJ, Ma W, et al. The fossil record of Mesozoic and Paleocene pennaraptorans. In: Pittman M, Xu X, editors. Pennaraptoran theropod dinosaurs: past progress and new frontiers. New York: Bulletin of the American Museum of Natural History; 2020. p. 37–96.


    Google Scholar
     

  • Bhullar BAS, Hanson M, Fabbri M, Pritchard A, Bever GS, Hoffman E. How to make a bird skull: major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. Integr Comp Biol. 2016;56(3):389–403.

    PubMed 
    Article 

    Google Scholar
     

  • Zhou YC, Sullivan C, Zhou ZH, Zhang FC. Evolution of tooth crown shape in Mesozoic birds, and its adaptive significance with respect to diet. Palaeoworld. 2021;30(4):724–36.

    Article 

    Google Scholar
     

  • Wu Y. Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds. Commun Biol. 2021;4(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Matsukawa M, Shibata K, Sato K, Xing X, Lockley MG. The Early Cretaceous terrestrial ecosystems of the Jehol Biota based on food-web and energy-flow models. Biol J Linn Soc. 2014;113(3):836–53.

    Article 

    Google Scholar
     

  • O’Connor JK, Wang XR, Chiappe LM, Gao CL, Meng QJ, Cheng XD, et al. Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species. J Vertebr Paleontol. 2009;29(1):188–204.

    Article 

    Google Scholar
     

  • O’Connor JK, Zhou ZH, Zhang FC. A reappraisal of Boluochia zhengi (Aves: Enantiornithes) and a discussion of intraclade diversity in the Jehol avifauna, China. J Syst Palaeontol. 2010;9(1):51–63.

    Article 

    Google Scholar
     

  • Li L, Wang J, Zhang X, Hou S. A new enantiornithine bird from the Lower Cretaceous Jiufotang formation in Jinzhou area, Western Liaoning Province, China. 地质学报(英文版). 2012;86(5):1039–44.


    Google Scholar
     

  • Yun CG. Comments on the taxonomic validity of Camptodontornis yangi (Li, Gong, Zhang, Yang, and Hou, 2010) and its relationships to Longipteryx chaoyangensis Zhang, Zhou, Hou, and Gu, 2000 and Boluochia zhengi Zhou, 1995. Zootaxa. 2019;4652(2):391–2.

    Article 

    Google Scholar
     

  • Hou LH, Chiappe LM, Zhang FC, Chuong CM. New Early Cretaceous fossil from China documents a novel trophic specialization for Mesozoic birds. Naturwissenschaften. 2004;91(1):22–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang XR, Zhao B, Shen CZ, Liu SZ, Gao CL, Cheng XD, et al. New material of Longipteryx (Aves: Enantiornithes) from the Lower Cretaceous Yixian Formation of China with the first recognized avian tooth crenulations. Zootaxa. 2015;3941(4):565–78.

    PubMed 
    Article 

    Google Scholar
     

  • Morschhauser EM, Varricchio DJ, Chunling G, Liu J, Wang X, Cheng X, et al. Anatomy of the Early Cretaceous bird Rapaxavis pani, a new species from Liaoning Province, China. J Vertebr Paleontol. 2009;29(2):545–54.

    Article 

    Google Scholar
     

  • Navalón G, Bright JA, Marugán-Lobón J, Rayfield EJ. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution. 2018;73(3):422–35.

    PubMed 
    Article 

    Google Scholar
     

  • Pigot AL, Sheard C, Miller ET, Bregman TP, Freeman BG, Roll U, et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat Ecol Evol. 2020;4:230–9.

    PubMed 
    Article 

    Google Scholar
     

  • Bright JA, Marugán-Lobón J, Cobbe SN, Rayfield EJ. The shapes of bird beaks are highly controlled by nondietary factors. Proc Natl Acad Sci U S A. 2016;113(19):5352–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Serrano FJ, Palmqvist P, Sanz JL. Multivariate analysis of neognath skeletal measurements: implications for body mass estimation in Mesozoic birds. Zool J Linn Soc. 2015;173(4):929–55.

    Article 

    Google Scholar
     

  • Marcus LF. Traditional morphometrics. In: Rohlf FJ, Bookstein FL, editors. Proceedings of the Michigan morphometrics workshop. Ann Arbor: University of Michigan Museum of Zoology; 1990. p. 77–122.


    Google Scholar
     

  • Csermely D, Rossi O. Bird claws and bird of prey talons: where is the difference? Ital J Zool. 2006;73(01):43–53.

    Article 

    Google Scholar
     

  • Fowler DW, Freedman EA, Scannella JB. Predatory functional morphology in raptors: interdigital variation in talon size is related to prey restraint and immobilisation technique. PLoS One. 2009;4(11):e7999.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Csermely D, Rossi O, Nasi F. Comparison of claw geometrical characteristics among birds of prey and non-raptorial birds. Ital J Zool. 2012;79(3):410–33.

    Article 

    Google Scholar
     

  • Cobb SE, Sellers WI. Inferring lifestyle for Aves and Theropoda: a model based on curvatures of extant avian ungual bones. PLoS One. 2020;15(2):e0211173.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Einoder LD, Richardson AMM. Aspects of the hindlimb morphology of some Australian birds of prey: a comparative and quantitative study. Auk. 2007;124(3):773–88.

    Article 

    Google Scholar
     

  • Stayton CT. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution. 2006;60(4):824–41.

    PubMed 
    Article 

    Google Scholar
     

  • Corbin CE, Lowenberger LK, Gray BL. Linkage and trade-off in trophic morphology and behavioural performance of birds. Funct Ecol. 2015;29(6):808–15.

    Article 

    Google Scholar
     

  • Adams NF, Rayfield EJ, Cox PG, Cobb SN, Corfe IJ. Functional tests of the competitive exclusion hypothesis for multituberculate extinction. R Soc Open Sci. 2019;6(3):181536.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma W, Pittman M, Lautenschlager S, Meade LE, Xu X. Functional morphology of the oviraptorosaur and scansoriopterygid skull. In: Pittman M, Xu X, editors. Pennaraptoran theropod dinosaurs: past progress and new frontiers. New York: Bulletin of the American Museum of Natural History; 2020. p. 229–49.


    Google Scholar
     

  • Bathe K-J. Finite element procedures. 2nd ed. Watertown: Bathe, Klaus-Jürgen; 2014.


    Google Scholar
     

  • Marcé-Nogué J, de Esteban-Trivigno S, Escrig Pérez C, Gil Espert L. Accounting for differences in element size and homogeneity when comparing finite element models: armadillos as a case study. Palaeontol Electron. 2016;19(2):2T.


    Google Scholar
     

  • Marcé-Nogué J, De Esteban-Trivigno S, Püschel TA, Fortuny J. The intervals method: a new approach to analyse finite element outputs using multivariate statistics. PeerJ. 2017;5:e3793.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Felice RN, Tobias JA, Pigot AL, Goswami A. Dietary niche and the evolution of cranial morphology in birds. Proc R Soc London Ser B. 2019;286(1897):20182677.


    Google Scholar
     

  • Hedrick BP, Cordero SA, Zanno LE, Noto C, Dodson P. Quantifying shape and ecology in avian pedal claws: the relationship between the bony core and keratinous sheath. Ecol Evol. 2019;9:11545–56.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams DC. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol. 2014;63(5):685–97.

    PubMed 
    Article 

    Google Scholar
     

  • Abdi H, Williams LJ. Tukey’s honestly significant difference (HSD) test. In: Salkind N, editor. Encyclopedia of research design. 3rd ed. Thousand Oaks: SAGE Publications, Inc.; 2010. p. 1–5.


    Google Scholar
     

  • Collyer ML, Adams DC. RRPP: an r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol Evol. 2018;9:1772–9.

    Article 

    Google Scholar
     

  • Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95(7):2027.

    Article 

    Google Scholar
     

  • Pineda-Munoz S, Alroy J. Dietary characterization of terrestrial mammals. Proc R Soc London Ser B. 2014;281(1789):20141173.


    Google Scholar
     

  • van der Meij MAA, Bout RG. Seed husking time and maximal bite force in finches. J Exp Biol. 2006;209(17):3329–35.

    PubMed 
    Article 

    Google Scholar
     

  • Tsang LR, Wilson LAB, Ledogar J, Wroe S, Attard M, Sansalone G. Raptor talon shape and biomechanical performance are controlled by relative prey size but not by allometry. Sci Rep. 2019;9:7076.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005;47(4):458–72.

    PubMed 
    Article 

    Google Scholar
     

  • Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57(4):717–45.

    PubMed 
    Article 

    Google Scholar
     

  • Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):94.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bright JA. A review of paleontological finite element models and their validity. J Paleontol. 2014;88(4):760–9.

    Article 

    Google Scholar
     

  • O’Gorman EJ, Hone DW. Body size distribution of the dinosaurs. PLoS One. 2012;7(12):e51925.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bourassa N, Morin A. Relationships between size structure of invertebrate assemblages and trophy and substrate composition in streams. J North Am Benthol Soc. 1995;14(3):393–403.

    Article 

    Google Scholar
     

  • Finlay BJ, Thomas JA, McGavin GC, Fenchel T, Clarke RT. Self-similar patterns of nature: insect diversity at local to global scales. Proc R Soc London Ser B. 2006;273(1596):1935–41.


    Google Scholar
     

  • Zweers G, Dejong F, Berkhoudt H, Vandenberge JC. Filter-feeding in flamingos (Phoenicopterus ruber). Condor. 1995;97(2):297–324.

    Article 

    Google Scholar
     

  • Friedman M. Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes. Proc R Soc London Ser B. 2012;279(1730):944–51.


    Google Scholar
     

  • Wallace MP, Temple SA. Competitive interactions within and between species in a guild of avian scavengers. Auk. 1987;104(2):290–5.

    Article 

    Google Scholar
     

  • Ruxton GD, Houston DC. Obligate vertebrate scavengers must be large soaring fliers. J Theor Biol. 2004;228(3):431–6.

    PubMed 
    Article 

    Google Scholar
     

  • Bechtel DB, Abecassis J, Shewry PR, Evers AD. Development, structure, and mechanical properties of the wheat grain. In: Khan K, editor. Wheat: chemistry and technology. 4th ed. Cambridge: Woodhead Publishing and AACC International Press; 2009. p. 51–95.

    Chapter 

    Google Scholar
     

  • Brown JH, Calder WA III, Kodric-Brown A. Correlates and consequences of body size in nectar-feeding birds. Am Zool. 1978;18(4):687–738.

    Article 

    Google Scholar
     

  • Fleming TH, Muchhala N. Nectar-feeding bird and bat niches in two worlds: pantropical comparisons of vertebrate pollination systems. J Biogeogr. 2008;35(5):764–80.

    Article 

    Google Scholar
     

  • Navalón G, Nebreda SM, Bright JA, Fabbri M, Benson RB, Bhullar B-A, et al. Craniofacial development illuminates the evolution of nightbirds (Strisores). Proc Royal Soc B. 2021;288(1948):20210181.

    Article 

    Google Scholar
     

  • Dudley R, Vermeij GJ. Do the power requirements of flapping flight constrain folivory in flying animals? Funct Ecol. 1992;6:101–4.


    Google Scholar
     

  • Pagès F. Compared and functional morphology of the hoatzin (Opisthocomus hoazin). Paris: Museum national d’histoire naturelle – MNHN PARIS; 2019.

  • Collar N, Boesman PFD. Red-breasted Pygmy-Parrot (Micropsitta bruijnii), version 1.0. In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Birds of the world. Ithaca: Cornell Lab of Ornithology; 2020.


    Google Scholar
     

  • Feduccia A. Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science. 1993;259(5096):790–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hopson JA. Ecomorphology of avian and nonavian theropod phalangeal proportions: implications for the arboreal versus terrestrial origin of bird flight. In: Ostrom JH, Gall LF, Gauthier J, editors. New perspectives on the origin and early evolution of birds: proceedings of the international symposium in honor of John H Ostrom. New Haven: Peabody Museum of Natural History; 2001. p. 211–35.


    Google Scholar
     

  • Pike AVL, Maitland DP. Scaling of bird claws. J Zool. 2004;262:73–81.

    Article 

    Google Scholar
     

  • Artuso C, Houston CS, Smith DG, Rohner C. Great horned owl (Bubo virginianus), version 1.0. In: Poole AF, editor. Birds of the world. Ithaca: Cornell Lab of Ornithology; 2020.


    Google Scholar
     

  • Holt DW, Berkley R, Deppe C, Enríquez PL, Petersen JL, Rangel Salazar JL, et al. Spectacled owl (Pulsatrix perspicillata), version 1.0. In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Birds of the world. Ithaca: Cornell Lab of Ornithology; 2020.


    Google Scholar
     

  • del Hoyo J, Olsen PD, Marks JS, Collar N. Morepork (Ninox novaeseelandiae), version 1.0. In: Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS, editors. Birds of the world. Ithaca: Cornell Lab of Ornithology; 2020.


    Google Scholar
     

  • Craig RB. An analysis of the predatory behavior of the loggerhead shrike. Auk. 1978;95(2):221–34.


    Google Scholar
     

  • Pedersen L, Geertsma M, Tottrup AP. Prey diversity is affected by climate and differs between age classes in the red-backed shrike (Lanius collurio). Ornis Fenn. 2012;89(2):99–108.


    Google Scholar
     

  • Slagsvold T, Sonerud GA. Prey size and ingestion rate in raptors: importance for sex roles and reversed sexual size dimorphism. J Avian Biol. 2007;38(6):650–61.

    Article 

    Google Scholar
     

  • Sustaita D, Rubega MA, Farabaugh SM. Come on baby, let’s do the twist: the kinematics of killing in loggerhead shrikes. Biol Lett. 2018;14(9):20180321.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allan D. White Helmetshrike (Prionops plumatus), version 1.0. In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Birds of the world. Ithaca: Cornell Lab of Ornithology; 2020.


    Google Scholar
     

  • Fowler DW, Freedman EA, Scannella JB, Kambic RE. The predatory ecology of Deinonychus and the origin of flapping in birds. PLoS One. 2011;6(12):e28964.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alonso JC, Bautista LM, Alonso JA. Sexual size dimorphism in the Common Crane, a monogamous, plumage-monomorphic bird. Ornis Fenn. 2019;96(4):194–205.


    Google Scholar
     

  • Cooney CR, Bright JA, Capp EJR, Chira AM, Hughes EC, Moody CJA, et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature. 2017;542(7641):344–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Connor JK, Chiappe LM, Gao C, Zhao B. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontol Pol. 2011;56(3):463–75.

    Article 

    Google Scholar
     

  • Kaye TG, Falk AR, Pittman M, Sereno PC, Martin LD, Burnham DA, et al. Laser-stimulated fluorescence in paleontology. PLoS One. 2015;10(5):e0125923.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Adams DC, Collyer ML. Phylogenetic comparative methods and the evolution of multivariate phenotypes. Annu Rev Ecol Evol Syst. 2019;50(1):405–25.

    Article 

    Google Scholar
     

  • Olsen AM. Feeding ecology is the primary driver of beak shape diversification in waterfowl. Funct Ecol. 2017;31(10):1985–95.

    Article 

    Google Scholar
     

  • Brockmann HJ, Barnard CJ. Kleptoparasitism in birds. Anim Behav. 1979;27:487–514.

    Article 

    Google Scholar
     

  • Hertel F. Ecomorphological indicators of feeding behavior in recent and fossil raptors. Auk. 1995;112(4):890–903.

    Article 

    Google Scholar
     

  • Chiappe LM, Meng Q. Birds of stone: Chinese avian fossils from the age of dinosaurs. Baltimore: John Hopkins University Press; 2016.


    Google Scholar
     

  • Barbosa A, Moreno E. Evolution of foraging strategies in shorebirds: an ecomorphological approach. Auk. 1999;116(3):712–25.

    Article 

    Google Scholar
     

  • Stidham TA, O’Connor JK. The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China. J Anat. 2021;239(5):1066–74.

    PubMed 
    Article 

    Google Scholar
     

  • Soons J, Herrel A, Genbrugge A, Aerts P, Podos J, Adriaens D, et al. Mechanical stress, fracture risk and beak evolution in Darwin’s ground finches (Geospiza). Philos Trans R Soc Lond B Biol Sci. 2010;365(1543):1093–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soons J, Genbrugge A, Podos J, Adriaens D, Aerts P, Dirckx J, et al. Is beak morphology in Darwin’s finches tuned to loading demands? PLoS One. 2015;10(6):e0129479.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Christiansen P, Wroe S. Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology. 2007;88(2):347–58.

    PubMed 
    Article 

    Google Scholar
     

  • Margalida A, Bertran J. Function and temporal variation in use of ossuaries by Bearded Vultures (Gypaetus barbatus) during the nestling period. Auk. 2001;118(3):785–9.

    Article 

    Google Scholar
     

  • Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346(6215):1320–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hertel F. Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology. 1994;75(4):1074–84.

    Article 

    Google Scholar
     

  • Linde-Medina M, Guerra C, Alcover JA. A revision of vulture feeding classification. Zoology. 2021;148:125946.

    PubMed 
    Article 

    Google Scholar
     

  • Burger AE. Time budgets, energy needs and kleptoparasitism in breeding Lesser Sheathbills (Chionis minor). Condor. 1981;83(2):106–12.

    Article 

    Google Scholar
     

  • Pennycuick CJ, Bartholomew GA. Energy budget of the lesser flamingo (Phoeniconaias minor Geoifroy). Afr J Ecol. 1973;11(2):199–207.

    Article 

    Google Scholar
     

  • Vogel SA. Matter of materials. Comparative biomechanics: life’s physical world. Princeton: Princeton University Press; 2013. p. 287–312.


    Google Scholar
     

  • Collins BG. Nectar intake and foraging efficiency: responses of honeyeaters and hummingbirds to variations in floral environments. Auk. 2008;125(3):574–87.

    Article 

    Google Scholar
     

  • Bright JA, Marugán-Lobón J, Rayfield EJ, Cobb SN. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evol Biol. 2019;19(1):104.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zusi RL, Bentz GD. Myology of the purple-throated carib (Eulampis jugularis) and other hummingbirds (Aves: Trochilidae). Smithson Contrib Zool. 1984;385:1-70.

  • Rico-Guevara A, Sustaita D, Gussekloo S, Olsen A, Bright J, Corbin C, et al. Feeding in birds: thriving in terrestrial, aquatic, and aerial niches. In: Bels V, Whishaw IQ, editors. Feeding in vertebrates: evolution, morphology, behavior, biomechanics. Gewerbesrasse: Springer International Publishing; 2019. p. 643–93.

    Chapter 

    Google Scholar
     

  • Huang J, Ren D, Sinitshenkova ND, Shih C. New genus and species of Hexagenitidae (Insecta: Ephemeroptera) from Yixian Formation, China. Zootaxa. 2007;1629(1):39–50.

    Article 

    Google Scholar
     

  • Ligon JD. The biology of the elf owl, Micrathene whitneyi. Misc Publ Mus Zool Univ Mich. 1968;136:1–70.


    Google Scholar
     

  • Kemp AC, Crowe TM. Morphometrics of falconets and hunting behaviour of the black-thighed falconet Microhierax fringillarius. Ibis. 1994;136(1):44–9.

    Article 

    Google Scholar
     

  • Yosef R. Prey transport by loggerhead shrikes. Condor. 1993:231–3.

  • Dunning JB Jr. CRC handbook of avian body masses. Boca Raton: CRC Press; 2008.


    Google Scholar
     

  • Li Z, Wang C-C, Wang M, Chiang C-C, Wang Y, Zheng X, et al. Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds. BMC Evol Biol. 2020;20:46.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kettel EF, Gentle LK, Yarnell RW, Quinn JL. Breeding performance of an apex predator, the peregrine falcon, across urban and rural landscapes. Urban Ecosyst. 2019;22(1):117–25.

    Article 

    Google Scholar
     

  • Robinson BW, Wilson DS. Optimal foraging, specialization, and a solution to Liem’s paradox. Am Nat. 1998;151(3):223–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang H, Wang B, Fang Y. Evolution of insect diversity in the Jehol Biota. Sci China Earth Sci. 2010;53(12):1908–17.

    Article 

    Google Scholar
     

  • Zhang J. New genera and new species of Chironomidae (Diptera, Insecta) from Late Jurassic of China. Acta Palaeontol Sin. 1991;30:556–69.


    Google Scholar
     

  • Zhang W, Engel MS, Yao Y, Ren D, Shih C. The Mesozoic family Archegocimicidae and phylogeny of the infraorder Leptopodomorpha (Hemiptera). J Syst Palaeontol. 2014;12(1):93–111.

    Article 

    Google Scholar
     

  • Peñalver E, Arillo A, Delclòs X, Peris D, Grimaldi DA, Anderson SR, et al. Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat Commun. 2017;8:1924.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gao T, Yin X, Shih C, Rasnitsyn AP, Xu X, Chen S, et al. New insects feeding on dinosaur feathers in mid-Cretaceous amber. Nat Commun. 2019;10(1):5424.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Button DJ, Zanno LE. Repeated evolution of divergent modes of herbivory in non-avian dinosaurs. Curr Biol. 2020;30(1):158–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ungar PS. Mammalian dental function and wear: a review. Biosurf Biotribol. 2015;1(1):25–41.

    Article 

    Google Scholar
     

  • O’Connor JK, Chiappe LM. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J Syst Palaeontol. 2011;9(1):135–57.

    Article 

    Google Scholar
     

  • Lautenschlager S. Reconstructing the past: methods and techniques for the digital restoration of fossils. R Soc Open Sci. 2016;3(10):160342.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS. Birds of the world. 2021 https://birdsoftheworld.org/bow/home.


    Google Scholar
     

  • Van Gestel W, Jansen J. Skullsite bird skull repository. 2020. http://skullsite.com/.


    Google Scholar
     

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491(7424):444–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang M, Zheng X, O’Connor JK, Lloyd GT, Wang X, Wang Y, et al. The oldest record of Ornithuromorpha from the Early Cretaceous of China. Nat Commun. 2015;6(1):6987.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou Z, Barrett PM, Hilton J. An exceptionally preserved Lower Cretaceous ecosystem. Nature. 2003;421(6925):807.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, et al. An unbiased molecular approach using 3′-UTRs resolves the avian family-level tree of life. Mol Biol Evol. 2020;38(1):108–27.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Smith BJ, Smith SA, Spaulding KA, Flammer K, Smallwood JE. The normal xeroradiographic and radiographic anatomy of the cockatiel (Nymphicus hollandis). Vet Radiol. 1990;31(5):226–34.

    Article 

    Google Scholar
     

  • Smith SA, Smith BJ. Normal xeroradiographic and radiographic anatomy of the red-tailed hawk (Buteo jamaicencis), with reference to other diurnal raptors. Vet Radiol. 1990;31(6):301–12.

    Article 

    Google Scholar
     

  • Smith BJ, Smith SA. Normal xeroradiographic and radiographic anatomy of the bobwhite quail (Colinus virginianus), with reference to other galliform species. Vet Radiol. 1991;32(3):127–34.

    Article 

    Google Scholar
     

  • Smith SA, Smith BJ. Normal xeroradiographic and radiographic anatomy of the great horned owl (Bubo virginianus), with special reference to the barn owl (Tyto alba). Vet Radiol. 1991;32(1):6–16.

    Article 

    Google Scholar
     

  • Gamble KC. Internal anatomy of the hornbill casque described by radiography, contrast radiography, and computed tomography. J Avian Med Surg. 2007;21(1):38–49.

    PubMed 
    Article 

    Google Scholar
     

  • Bjarnason A, Benson RBJ. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM. 2021;7(1):125.

    Article 

    Google Scholar
     

  • Udoye KC, Schulenberg TS. Razor-billed Curassow (Mitu tuberosum), version 1.0. In: Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS, editors. Birds of the world. Ithaca: Cornell Lab of Ornithology; 2020.


    Google Scholar
     

  • Hawkins P. The welfare implications of housing captive wild and domesticated birds. In: Duncan IJH, Hawkins P, editors. The welfare of domestic fowl and other captive birds. Dordrecht: Springer Netherlands; 2010. p. 53–102.

    Chapter 

    Google Scholar
     

  • Li L, Gong E, Zhang L, Yang Y, Hou L. A new enantiornithine bird (Aves) from the Early Cretaceous of Liaoning, China. Acta Palaeontol Sin. 2010;49(4):524–31.


    Google Scholar
     

  • Si G, Dong Y, Ma Y, Zhang Z. Shape similarities and differences in the skulls of scavenging raptors. Zoolog Sci. 2015;32(2):171–8.


    Google Scholar
     

  • Sun Y, Si G, Wang X, Wang K, Zhang Z. Geometric morphometric analysis of skull shape in the Accipitridae. Zoomorphology. 2018;137(3):445–56.

    Article 

    Google Scholar
     

  • Karban R, Agrawal AA. Herbivore offense. Annu Rev Ecol Syst. 2002;33(1):641–64.

    Article 

    Google Scholar
     

  • Wang D, Wang Q, Sun X, Gao Y, Ding J. Potato tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechioidea) leaf infestation affects performance of conspecific larvae on harvested tubers by inducing chemical defenses. Insects. 2020;11(9):633.

    PubMed Central 
    Article 

    Google Scholar
     

  • Lovvorn JR. Biomechanics and foraging profitability: an approach to assessing trophic needs and impacts of diving ducks. Hydrobiologia. 1994;279(1):223–33.

    Article 

    Google Scholar
     

  • Carboneras C, Kirwan GM. Taiga Bean-Goose (Anser fabalis), version 1.0. In: Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS, editors. Birds of the world. Ithaca: Cornell Lab of Ornithology; 2020.


    Google Scholar
     

  • Dumont ER. The effect of food hardness on feeding behaviour in frugivorous bats (Phyllostomidae): an experimental study. J Zool. 1999;248(2):219–29.

    Article 

    Google Scholar
     

  • Dumont ER, O’neal R. Food hardness and feeding behavior in Old World fruit bats (Pteropodidae). J Mammal. 2004;85(1):8–14.

    Article 

    Google Scholar
     

  • Lambert JE, Chapman CA, Wrangham RW, Conklin-Brittain NL. Hardness of cercopithecine foods: implications for the critical function of enamel thickness in exploiting fallback foods. Am J Phys Anthropol. 2004;125(4):363–8.

    PubMed 
    Article 

    Google Scholar
     

  • Reis SB, Mercadante-Simões MO, Ribeiro LM. Pericarp development in the macaw palm Acrocomia aculeata (Arecaceae). Rodriguésia. 2012;63(3):541–9.

    Article 

    Google Scholar
     

  • Burubai W, Amula E, Davies RM, Etekpe GWW, Daworiye SP. Determination of Poisson’s ratio and elastic modulus of African nutmeg [Monodora myristica]. Int Agrophys. 2008;22(2):99–102.


    Google Scholar
     

  • Bowler M, Bodmer RE. Diet and food choice in Peruvian red uakaris (Cacajao calvus ucayalii): selective or opportunistic seed predation? Int J Primatol. 2011;32(5):1109.

    Article 

    Google Scholar
     

  • Torres B. La dieta del paujil (Mitu mitu): o las vicisitudes de ser frugívoro. Bol Lima. 1989;66:87–90.


    Google Scholar
     

  • Norconk MA, Veres M. Physical properties of fruit and seeds ingested by primate seed predators with emphasis on sakis and bearded sakis. Anat Rec. 2011;294(12):2092–111.

    Article 

    Google Scholar
     

  • Prosser P, Hart ADM. Assessing potential exposure of birds to pesticide-treated seeds. Ecotoxicology. 2005;14(7):679–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bestwick J, Unwin DM, Purnell MA. Dietary differences in archosaur and lepidosaur reptiles revealed by dental microwear textural analysis. Sci Rep. 2019;9(1):11691.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cribb BW, Lin C-L, Rintoul L, Rasch R, Hasenpusch J, Huang H. Hardness in arthropod exoskeletons in the absence of transition metals. Acta Biomater. 2010;6(8):3152–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Olerud H. Lessons from nature-surface characterisation by means of nanotechnology. Trondheim: Institutt for Produktutvikling og Materialer; 2013.

  • Rong J, Lin Y, Sui Z, Wang S, Wei X, Xiao J, et al. Amorphous calcium phosphate in the pupal cuticle of Bactrocera dorsalis Hendel (Diptera: Tephritidae): a new discovery for reconsidering the mineralization of the insect cuticle. J Insect Physiol. 2019;119:103964.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seear PJ, Tarling GA, Burns G, Goodall-Copestake WP, Gaten E, Özkaya Ö, et al. Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba). BMC Genomics. 2010;11(1):582.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pütz K, Buchholz F. Comparative ultrastructure of the cuticle of some pelagic, nektobenthic and benthic malacostracan crustaceans. Mar Biol. 1991;110(1):49–58.

    Article 

    Google Scholar
     

  • Sykes PW Jr. The feeding habits of the snail kite in Florida, USA. Colon Waterbirds. 1987;10(1):84–92.

  • Kruuk H. Competition for food between vultures in East Africa. Ardea. 1967;55:171–93.


    Google Scholar
     

  • Lopes LE, Fernandes AM, Medeiros MCI, Marini MA. A classification scheme for avian diet types. J Field Ornithol. 2016;87(3):309–22.

    Article 

    Google Scholar
     

  • Kerkhoff AJ, Enquist BJ. Multiplicative by nature: why logarithmic transformation is necessary in allometry. J Theor Biol. 2009;257(3):519–21.

    Article 

    Google Scholar
     

  • Bierregaard RO, Kirwan GM, Boesman PFD. Collared Forest-Falcon (Micrastur semitorquatus), version 1.0. In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Birds of the world. Ithaca: Cornell Lab of Ornithology; 2020.


    Google Scholar
     

  • Portugal SJ, Murn CP, Sparkes EL, Daley MA. The fast and forceful kicking strike of the secretary bird. Curr Biol. 2016;26(2):R58–R9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silva AN, Nunes R, Estrela DC, Malafaia G, Castro ALS. Behavioral repertoire of the poorly known Red-legged Seriema, Cariama cristata (Cariamiformes: Cariamidae). Ornithol Res. 2016;24(2):73–9.

    Article 

    Google Scholar
     

  • Sustaita D, Pouydebat E, Manzano A, Abdala V, Hertel F, Herrel A. Getting a grip on tetrapod grasping: form, function, and evolution. Biol Rev. 2013;88(2):380–405.

    PubMed 
    Article 

    Google Scholar
     

  • Saitta ET, Rogers CS, Brooker RA, Vinther J. Experimental taphonomy of keratin: a structural analysis of early taphonomic changes. Palaios. 2017;32(10):647–57.

    Article 

    Google Scholar
     

  • Mosto MC, Tambussi CP. Qualitative and quantitative analysis of talons of diurnal bird of prey. Anat Histol Embryol. 2014;43(1):6–15.

    Article 

    Google Scholar
     

  • Atterholt J, Hutchison JH, O’Connor JK. The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae. PeerJ. 2018;6:e5910.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Macdonald DA, Royal K, Buchanan B. Evaluating the effects of parallax in archaeological geometric morphometric analyses. Archaeol Anthropol Sci. 2020;12(7):149.

    Article 

    Google Scholar
     

  • Chiappe LM, Shu’An J, Qiang J. Juvenile birds from the early cretaceous of China: Implications for enantiornithine ontogeny. Am Mus Novit. 2007;3594:1–46.

  • Knoll F, Chiappe LM, Sanchez S, Garwood RJ, Edwards NP, Wogelius RA, et al. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds. Nat Commun. 2018;9:937.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lima FC, Vieira LG, Santos ALQ, De Simone SBS, Hirano LQL, Silva JMM, et al. Anatomy of the scleral ossicles in brazilian birds. J Morphol Sci. 2017;26(3-4):165–9.


    Google Scholar
     

  • Wang M, Hu H. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. Anat Rec. 2017;300(1):62–75.

    Article 

    Google Scholar
     

  • Brusatte SL, Sakamoto M, Montanari S, Harcourt Smith WEH. The evolution of cranial form and function in theropod dinosaurs: insights from geometric morphometrics. J Evol Biol. 2012;25(2):365–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sakamoto M. Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proc R Soc London Ser B. 2010;277(1698):3327–33.


    Google Scholar
     

  • Dumont ER, Grosse IR, Slater GJ. Requirements for comparing the performance of finite element models of biological structures. J Theor Biol. 2009;256(1):96–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41(2):356–67.

    PubMed 
    Article 

    Google Scholar
     

  • Yosibash Z, Tal D, Trabelsi N. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Philos Trans R Soc Lond A. 1920;2010(368):2707–23.


    Google Scholar
     

  • Sternheim A, Traub F, Trabelsi N, Dadia S, Gortzak Y, Snir N, et al. When and where do patients with bone metastases actually break their femurs? A CT-based finite element analysis. Bone Joint J. 2020;102-B(5):638–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cuff AR, Bright JA, Rayfield EJ. Validation experiments on finite element models of an ostrich (Struthio camelus) cranium. PeerJ. 2015;3:e1294.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cost IN, Middleton KM, Sellers KC, Echols MS, Witmer LM, Davis JL, et al. Palatal biomechanics and its significance for cranial kinesis in Tyrannosaurus rex. Anat Rec. 2019;303:999–1017.

    Article 

    Google Scholar
     

  • Rayfield EJ. Strain in the ostrich mandible during simulated pecking and validation of specimen-specific finite element models. J Anat. 2011;218(1):47–58.

    PubMed 
    Article 

    Google Scholar
     

  • Marcé-Nogué J, DeMiguel D, Fortuny J, de Esteban-Trivigno S, Gil EL. Quasi-homothetic transformation for comparing the mechanical performance of planar models in biological research. Palaeontol Electron. 2013;16(3):6T.


    Google Scholar
     

  • Miller CV, Pittman M, Kaye TG, Wang X, Bright JA, Zheng X. Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun Biol. 2020;3:519.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morales-García NM, Burgess TD, Hill JJ, Gill PG, Rayfield EJ. The use of extruded finite-element models as a novel alternative to tomography-based models: a case study using early mammal jaws. J R Soc Interface. 2019;16(161):20190674.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shufeldt RW. The myology of the raven (Corvus corax sinuatus.): a guide to the study of the muscular system in birds. New York: Macmillan and Company; 1890.

  • Beecher WJ. Convergence in the Coerebidae. Wilson Bull. 1951;63(4):274–87.

  • Fisher HI, Goodman DC. The myology of the whooping crane, Grus americana. Ill Biol Monogr. 1955;24(2):1–127.


    Google Scholar
     

  • Zusi RL. Structural adaptations of the head and neck in the black skimmer; 1962.


    Google Scholar
     

  • George JC, Berger AJ. Avian myology. New York: Academic; 1966.


    Google Scholar
     

  • Zusi RL, Storer RW. Osteology and myology of the head and neck of the pied-billed grebes (Podilymbus). Misc Publ Mus Zool Univ Mich. 1969;139:1–49.


    Google Scholar
     

  • Wild JM, Zeigler HP. Central representation and somatotopic organization of the jaw muscles within the facial and trigeminal nuclei of the pigeon (Columba livia). J Comp Neurol. 1980;192(1):175–201.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Holliday CM, Witmer LM. Archosaur adductor chamber evolution: integration of musculoskeletal and topological criteria in jaw muscle homology. J Morphol. 2007;268(6):457–84.

    PubMed 
    Article 

    Google Scholar
     

  • Tokita M, Schneider RA. Developmental origins of species-specific muscle pattern. Dev Biol. 2009;331(2):311–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Donatelli RJ. Jaw musculature of the Picini (Aves: Piciformes: Picidae). Int J Zool. 2012;2012:941678.

    Article 

    Google Scholar
     

  • Bhattacharyya BN. Avian jaw function: adaptation of the seven–muscle system and a review. Proc Zool Soc. 2013;66(2):75–85.

    Article 

    Google Scholar
     

  • Lautenschlager S, Bright JA, Rayfield EJ. Digital dissection–using contrast-enhanced computed tomography scanning to elucidate hard-and soft-tissue anatomy in the Common Buzzard Buteo buteo. J Anat. 2014;224(4):412–31.

    PubMed 
    Article 

    Google Scholar
     

  • Quayle MR, Barnes DG, Kaluza OL, McHenry CR. An interactive three dimensional approach to anatomical description-the jaw musculature of the Australian laughing kookaburra (Dacelo novaeguineae). PeerJ. 2014;2:e355.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carril J, Degrange FJ, Tambussi CP. Jaw myology and bite force of the monk parakeet (Aves, Psittaciformes). J Anat. 2015;227(1):34–44.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith-Paredes D, Bhullar B-AS. The skull and head muscles of Archosauria. In: Ziermann JM, Diaz Jr RE, Diogo R, editors. Heads, jaws, and muscles: anatomical, functional, and developmental diversity in chordate evolution. Gewerbesrasse: Springer International Publishing; 2019. p. 229–51.

    Chapter 

    Google Scholar
     

  • To KH, O’Brien HD, Stocker MR, Gignac PM. Cranial musculoskeletal description of black-throated finch (Aves: Passeriformes: Estrildidae) with DiceCT. Integr Org Biol. 2021;3(1):obab007.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holliday CM. New insights into dinosaur jaw muscle anatomy. Anat Rec. 2009;292(9):1246–65.

    Article 

    Google Scholar
     

  • Brückner A, Heethoff M. A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology. 2017;27(1):33–46.

    Article 
    CAS 

    Google Scholar
     

  • Palarea-Albaladejo J, Martin-Fernandez JA. Values below detection limit in compositional chemical data. Anal Chim Acta. 2013;764:32–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Palarea-Albaladejo J, Martín-Fernández JA. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intellig Lab Syst. 2015;143:85–96.

    CAS 
    Article 

    Google Scholar
     

  • Filzmoser P, Hron K, Reimann C. Principal component analysis for compositional data with outliers. Environmetrics. 2009;20(6):621–32.

    Article 

    Google Scholar
     

  • Van den Boogaart KG, Tolosana-Delgado R. “compositions”: a unified R package to analyze compositional data. Comput Geosci. 2008;34(4):320–38.

    Article 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.


    Google Scholar
     

  • Miller CV, Pittman M, Wang X, Zheng X, Bright JA. Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies. Mendeley Data; 2022. https://doi.org/10.17632/w3c8p5w3hn.1.

    Book 

    Google Scholar
     

  • Plotly. Plotly R Open Source Graphing Library. 2021. Available from: https://plotly.com/r/.

  • López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez CM, Gude-Sampedro F. OptimalCutpoints: an R package for selecting optimal cutpoints in diagnostic tests. J Stat Softw. 2014;61(8):1–36.

    Article 

    Google Scholar
     

  • Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(1):1–26.


    Google Scholar
     

  • Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther. 2005;85(3):257–68.

    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)