• United Nations, Department of Economic and Social Affairs, Population Dynamics. World population prospects 2019: United Nations Department of Economics and Social Affairs, Population Dynamics; 2019. Available from: https://population.un.org/wpp/ [cited 4 Jan 2021].


    Google Scholar
     

  • Glisky EL. Changes in cognitive function in human aging. In: Riddle DR, editor. Brain aging: models, methods, and mechanisms. Boca Raton: CRC Press/Taylor & Francis; 2007. (Frontiers in Neuroscience).


    Google Scholar
     

  • Daffner KR. Promoting successful cognitive aging: a comprehensive review. J Alzheimers Dis. 2010;19(4):1101–22.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diabetes Rep. 2013;13(3):435–44.

    CAS 
    Article 

    Google Scholar
     

  • Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14(3):133–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Walker KA, Gottesman RF, Wu A, Knopman DS, Gross AL, Mosley TH, et al. Systemic inflammation during midlife and cognitive change over 20 years. Neurology. 2019;92(11):e1256–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology. 2007;68(21):1809–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gray MT, Woulfe JM. Striatal blood–brain barrier permeability in parkinson’s disease. J Cereb Blood Flow Metab. 2015;35(5):747–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanmarco LM, Wheeler MA, Gutiérrez-Vázquez C, Polonio CM, Linnerbauer M, Pinho-Ribeiro FA, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;590(7846):473–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Willyard C. How gut bacteria alter the brain. Nature. 2021;590:22–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, et al. Colonic inflammation in Parkinson’s disease. Neurobiol Dis. 2013;50:42–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Damms-Machado A, Louis S, Schnitzer A, Volynets V, Rings A, Basrai M, et al. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am J Clin Nutr. 2017;105(1):127–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park H, Kim M, Kwon GT, Lim DY, Yu R, Sung M-K, et al. A high-fat diet increases angiogenesis, solid tumor growth, and lung metastasis of CT26 colon cancer cells in obesity-resistant BALB/c mice. Mol Carcinog. 2012;51(11):869–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Galea I. The blood–brain barrier in systemic infection and inflammation. Cell Mol Immunol. 2021;18(11):2489–501.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13(10):1173–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J. 2010;24(4):1023–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ni P, Dong H, Wang Y, Zhou Q, Xu M, Qian Y, et al. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J Neuroinflammation. 2018;15(1):332.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and Back. Physiol Rev. 2019;99(1):21–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jassbi AR, Zare S, Firuzi O, Xiao J. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem Rev. 2016;15(5):829–67.

    CAS 
    Article 

    Google Scholar
     

  • Zare Shahneh F, Valiyari S, Baradaran B, Abdolalizadeh J, Bandehagh A, Azadmehr A, et al. Inhibitory and Cytotoxic Activities of Salvia Officinalis L. Extract on Human Lymphoma and Leukemia Cells by Induction of Apoptosis. Adv Pharm Bull. 2013;3(1):51–5 eISSN 2251–7308.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamidpour M, Hamidpour R, Hamidpour S, Shahlari M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and Cancer. J Tradit Complement Med. 2014;4(2):82–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Culpepper N. The Complete Herbal; 1652. p. 102–16.


    Google Scholar
     

  • Lopresti AL. Salvia (sage): a review of its potential cognitive-enhancing and protective effects. Drugs R&D. 2017;17(1):53–64.

    CAS 
    Article 

    Google Scholar
     

  • Tildesley N, Kennedy D, Perry E, Ballard C, Wesnes K, Scholey A. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol Behav. 2005;83(5):699–709.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology. 2006;31(4):845–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scholey AB, Tildesley NTJ, Ballard CG, Wesnes KA, Tasker A, Perry EK, et al. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology. 2008;198(1):127–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kennedy DO, Dodd FL, Robertson BC, Okello EJ, Reay JL, Scholey AB, et al. Monoterpenoid extract of sage ( Salvia lavandulaefolia ) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J Psychopharmacol. 2011;25(8):1088–100.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edwards KD, Dubberke A, Meyer N, Kugel S, Hellhammer J. Assessment of the Effects of a Sage (Salvia officinalis) Extract on Cognitive Performance in Adolescents and Young Adults. medRxive. 2021; Available from: http://medrxiv.org/lookup/doi/10.1101/2021.05.28.21257776.

  • Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther. 2003;28(1):53–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Russo C, Edwards KD, Margetts G, Kleidonas S, Zaibi NS, Clapham JC, et al. Effects of Salvia officinalis L. and Chamaemelum nobile (L.) extracts on inflammatory responses in two models of human cells: primary subcutaneous adipocytes and neuroblastoma cell line (SK-N-SH). J Ethnopharmacol. 2021;268:113614.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006;16(6):710–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging. 2008;3(2):211–25.

  • Perry NSL, Houghton PJ, Theobald A, Jenner P, Perry EK. In-vitro inhibition of human erythrocyte Acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent Terpenes. J Pharm Pharmacol. 2000;52(7):895–902.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Mello Andrade JM, dos Santos Passos C, Kieling Rubio MA, Mendonça JN, Lopes NP, Henriques AT. Combining in vitro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration. Chem Biol Interact. 2016;254:135–45.

    Article 
    CAS 

    Google Scholar
     

  • Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA. Comparative study on the inhibitory effect of Caffeic and Chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res. 2013;38(2):413–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mazzio E, Deiab S, Park K, Soliman K. High throughput screening to identify natural human monoamine oxidase b inhibitors: natural resources: human mao-b inhibitors. Phytother Res. 2013;27(6):818–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dorszewska J, Prendecki M, Oczkowska A, Rozycka A, Lianeri M, Kozubski W. Polymorphism of the COMT, MAO, DAT, NET and 5-HTT genes, and biogenic amines in Parkinson’s disease. Curr Genomics. 2014;14(8):518–33.

    Article 
    CAS 

    Google Scholar
     

  • Cowen P, Sherwood AC. The role of serotonin in cognitive function: evidence from recent studies and implications for understanding depression. J Psychopharmacol. 2013;27(7):575–83.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schmitt J, Wingen M, Ramaekers J, Evers E, Riedel W. Serotonin and human cognitive performance. Curr Pharm Des. 2006;12(20):2473–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bäckman L, Lindenberger U, Li S-C, Nyberg L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev. 2010;34(5):670–7.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Nieoullon A. Dopamine and the regulation of cognition and attention. Prog Neurobiol. 2002;67(1):53–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Apud JA, Mattay V, Chen J, Kolachana BS, Callicott JH, Rasetti R, et al. Tolcapone improves cognition and cortical information processing in Normal human subjects. Neuropsychopharmacology. 2007;32(5):1011–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bhakta SG, Light GA, Talledo JA, Balvaneda B, Hughes E, Alvarez A, et al. Tolcapone-enhanced Neurocognition in healthy adults: neural basis and predictors. Int J Neuropsychopharmacol. 2017;20(12):979–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cameron IGM, Wallace DL, Al-Zughoul A, Kayser AS, D’Esposito M. Effects of tolcapone and bromocriptine on cognitive stability and flexibility. Psychopharmacology. 2018;235(4):1295–305.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Farrell SM, Tunbridge EM, Braeutigam S, Harrison PJ. COMT Val158Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol Psychiatry. 2012;71(6):538–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schacht JP. COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. Pharmacogenomics J. 2016;16(5):430–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barnett JH, Xu K, Heron J, Goldman D, Jones PB. Cognitive effects of genetic variation in monoamine neurotransmitter systems: a population-based study of COMT, MAOA, and 5HTTLPR. Am J Med Genet B Neuropsychiatr Genet. 2011;156(2):158–67.

    PubMed 
    Article 

    Google Scholar
     

  • Manor I, Tyano S, Mel E, Eisenberg J, Bachner-Melman R, Kotler M, et al. Family-based and association studies of monoamine oxidase a and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatry. 2002;7(6):626–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun H, Yuan F, Shen X, Xiong G, Wu J. Role of COMT in ADHD: a systematic Meta-analysis. Mol Neurobiol. 2014;49(1):251–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turic D, Williams H, Langley K, Owen M, Thapar A, O’Donovan MC. A family based study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD). Am J Med Genet B Neuropsychiatr Genet. 2005;133B(1):64–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barnett JH, Heron J. Gender-specific effects of the catechol-O-methyltransferase Val108/158Met polymorphism on cognitive function in children. Am J Psychiatry. 2007;164(1):142–9.

  • Nagel IE. Human aging magnifies genetic effects on executive functioning and working memory. Front Hum Neurosci. 2008;2:1–8.

  • Hase T, Shishido S, Yamamoto S, Yamashita R, Nukima H, Taira S, et al. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep. 2019;9(1):8711.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Thangaraj P. Quantification of Secondary Metabolites. In: Pharmacological Assays of Plant-Based Natural Products. Cham: Springer International Publishing; 2016. p. 49–55. Progress in Drug Research; vol. 71.

    Chapter 

    Google Scholar
     

  • Wetmore BA, Clewell RA, Cholewa B, Parks B, Pendse SN, Black MB, et al. Assessing bioactivity-exposure profiles of fruit and vegetable extracts in the BioMAP profiling system. Toxicol in Vitro. 2018;54:41–57.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Müller-Enoch D, Seidl E, Thomas H. 6.7-Dihydroxycumarin (Aesculetin) als Substrat der catechol-O-methyltransferase / 6,7-Dihydroxycoumarin (Aesculetin) as a substrate for Catediol-O-methyltransferase. Z Naturforsch C Biosci. 1976;31(5–6):280–4.

    PubMed 
    Article 

    Google Scholar
     

  • Weyler W, Salach JI. Purification and properties of mitochondrial monoamine oxidase type a from human placenta. J Biol Chem. 1985;260(24):13199–207.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsugeno Y, Hirashiki I, Ogata F, Ito A. Regions of the molecule responsible for substrate specificity of monoamine oxidase a and B: a chimeric enzyme analysis. J Biochem. 1995;118(5):974–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D, Padmaja R, et al. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol. 2007;109(2):359–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, et al. Chemical and pharmacological aspects of Caffeic acid and its activity in Hepatocarcinoma. Front Oncol. 2019;9:541.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Andrews C, McLean MH, Durum SK. Cytokine tuning of intestinal epithelial function. Front Immunol. 2018;9:1270.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017;49(5):e338.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sonnier DI, Bailey SR, Schuster RM, Gangidine MM, Lentsch AB, Pritts TA. Proinflammatory chemokines in the intestinal lumen contribute to intestinal dysfunction during Endotoxemia. Shock. 2012;37(1):63–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xue X, Falcon DM. The role of immune cells and cytokines in intestinal wound healing. IJMS. 2019;20(23):6097.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tchalla AE, Wellenius GA, Travison TG, Gagnon M, Iloputaife I, Dantoine T, et al. Circulating vascular cell adhesion Molecule-1 is associated with cerebral blood flow Dysregulation, mobility impairment, and falls in older adults. Hypertension. 2015;66(2):340–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tchalla AE, Wellenius GA, Sorond FA, Gagnon M, Iloputaife I, Travison TG, et al. Elevated soluble vascular cell adhesion Molecule-1 is associated with cerebrovascular resistance and cognitive function. J Gerentol A Biol Sci Med Sci. 2016;72(4):560–6.


    Google Scholar
     

  • Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN, Zera KA, et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med. 2019;25(6):988–1000.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jakovljević M, Jokić S, Molnar M, Jašić M, Babić J, Jukić H, et al. Bioactive profile of various Salvia officinalis L. Preparations. Plants (Basel). 2019;8(3):55.

    Article 
    CAS 

    Google Scholar
     

  • Xu T, Wang X, Zhong B, Nurieva RI, Ding S, Dong C. Ursolic acid suppresses Interleukin-17 (IL-17) production by selectively antagonizing the function of RORγt protein. J Biol Chem. 2011;286(26):22707–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lodygin D, Hermann M, Schweingruber N, Flügel-Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566(7745):503–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA) – molecular. Cell Res. 2011;1813(5):878–88.

    CAS 

    Google Scholar
     

  • Schett G. Physiological effects of modulating the interleukin-6 axis. Rheumatology. 2018;57(suppl_2):ii43–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • David J, Dominguez C, Hamilton D, Palena C. The IL-8/IL-8R Axis: a double agent in tumor immune resistance. Vaccines. 2016;4(3):22.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix Metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170(6):3369–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marasco MR, Conteh AM, Reissaus CA, Mirmira RG, Linnemann AK. Interleukin-6 Reduces b-Cell Oxidative Stress by Linking Autophagy With the Antioxidant Response. Diabetes. 2018;67:13.

    Article 
    CAS 

    Google Scholar
     

  • Tildesley NTJ, Kennedy DO, Perry EK, Ballard CG, Savelev S, Wesnes KA, et al. Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav. 2003 Jun;75(3):669–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bradley P. SAGE LEAF Labiatae. In: British herbal compendium Volume 2: A handbook of scientific information on widely used plant drugs. Exeter: British Herbal Medicine Association; 2006. p 339–44.


    Google Scholar
     

  • Sališová M, Toma Š, Mason TJ. Comparison of conventional and ultrasonically assisted extractions of pharmaceutically active compounds from Salvia officinalis. Ultrason Sonochem. 1997;4(2):131–4.

    PubMed 
    Article 

    Google Scholar
     

  • Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O’Connor G, et al. Neurotransmitters: The Critical Modulators Regulating Gut–Brain Axis. J Cell Physiol. 2017;232(9):2359–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)