• Zhang L, Zhou X, Michal JJ, Ding B, Li R, Jiang Z. Genome wide screening of candidate genes for improving piglet birth weight using high and low estimated breeding value populations. Int J Biol Sci. 2014;10(3):236–44. https://doi.org/10.7150/ijbs.7744.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehfeldt C, Kuhn G. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. J Animal Sci. 2006;84(suppl_13):E113–23.

    Article 

    Google Scholar
     

  • Ashmore C, Addis P, Doerr L. Development of muscle fibers in the fetal pig. J Anim Sci. 1973;36(6):1088–93.

    CAS 
    Article 

    Google Scholar
     

  • Davoli R, Braglia S, Russo V, Varona L, te Pas MF. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs. J Anim Breed Genet. 2011;128:15–27.

    CAS 
    Article 

    Google Scholar
     

  • Picard B, Lefaucheur L, Berri C, Duclos MJ. Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev. 2002;5:415–31. https://doi.org/10.1051/rnd:2002035.

    Article 

    Google Scholar
     

  • Posont RJ, Yates DT. Postnatal nutrient repartitioning due to adaptive developmental programming. Vet Clin North Am Food Anim Pract. 2019;35(2):277–88. https://doi.org/10.1016/j.cvfa.2019.02.001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Li J, Liu H, Xi Y, Xue M, Liu W, et al. Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs. BMC Genomics. 2015;16:377. https://doi.org/10.1186/s12864-015-1580-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He D, Zou T, Gai X, Ma J, Li M, Huang Z, et al. MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds. PLoS ONE. 2017;12(7): e0181897.

    Article 

    Google Scholar
     

  • Zhang X, Cai S, Chen L, Yuan R, Nie Y, Ding S, et al. Integrated miRNA-mRNA transcriptomic analysis reveals epigenetic-mediated embryonic muscle growth differences between Wuzhishan and Landrace pigs1. J Anim Sci. 2019;97(5):1967–78. https://doi.org/10.1093/jas/skz091.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muráni E, Murániová M, Ponsuksili S, Schellander K, Wimmers K. Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity. BMC Dev Biol. 2007;7:109.

    Article 

    Google Scholar
     

  • Siengdee P, Trakooljul N, Murani E, Brand B, Schwerin M, Wimmers K, et al. Pre- and post-natal muscle microRNA expression profiles of two pig breeds differing in muscularity. Gene. 2015;561(2):190–8.

    CAS 
    Article 

    Google Scholar
     

  • Bavelloni A, Ramazzotti G, Poli A, Piazzi M, Focaccia E, Blalock W, et al. MiRNA-210: a current overview. Anticancer Res. 2017;37(12):6511–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Ali A, Murani E, Hadlich F, Liu X, Wimmers K, Ponsuksili S. Prenatal skeletal muscle transcriptome analysis reveals novel MicroRNA-mRNA networks associated with intrauterine growth restriction in pigs. Cells. 2021;10(5):1007. https://doi.org/10.3390/cells10051007.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali A, Murani E, Hadlich F, Liu X, Wimmers K, Ponsuksili S. In utero fetal weight in pigs is regulated by micrornas and their target genes. Genes. 2021;12:8. https://doi.org/10.3390/genes12081264.

    Article 

    Google Scholar
     

  • Ponsuksili S, Murani E, Trakooljul N, Schwerin M, Wimmers K. Discovery of candidate genes for muscle traits based on GWAS supported by eQTL-analysis. Int J Biol Sci. 2014;10(3):327–37. https://doi.org/10.7150/ijbs.8134.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet. 2015;16(4):197–212. https://doi.org/10.1038/nrg3891.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Doss S, Schadt E, Drake T, Lusis A. Cis-acting expression quantitative trait loci in mice. Genome Res. 2005;15(5):681–91.

    CAS 
    Article 

    Google Scholar
     

  • Ponsuksili S, Murani E, Brand B, Schwerin M, Wimmers K. Integrating expression profiling and whole-genome association for dissection of fat traits in a porcine model. J Lipid Res. 2011;52:668–78. https://doi.org/10.1194/jlr.M013342.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponsuksili S, Oster M, Reyer H, Hadlich F, Trakooljul N, Rodehutscord M, et al. Genetic regulation and heritability of miRNA and mRNA expression link to phosphorus utilization and gut microbiome. Open Biol. 2021;11(2):200182. https://doi.org/10.1098/rsob.200182.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponsuksili S, Trakooljul N, Hadlich F, Haack F, Murani E, Wimmers K. Genetically regulated hepatic transcripts and pathways orchestrate haematological, biochemical and body composition traits. Sci Rep. 2016;6:39614. https://doi.org/10.1038/srep39614.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponsuksili S, Trakooljul N, Hadlich F, Haack F, Murani E, Wimmers K. Genetic architecture and regulatory impact on hepatic microRNA expression linked to immune and metabolic traits. Open Biol. 2017;7(11):170101. https://doi.org/10.1098/rsob.170101.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponsuksili S, Trakooljul N, Hadlich F, Methling K, Lalk M, Murani E, et al. Genetic regulation of liver metabolites and transcripts linking to biochemical-clinical parameters. Front Genet. 2019;17(10):348.

    Article 

    Google Scholar
     

  • Ponsuksili S, Zebunke M, Murani E, Trakooljul N, Krieter J, Puppe B, et al. Integrated Genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep. 2015;5:16264. https://doi.org/10.1038/srep16264.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lents CA, Freking BA. Intrauterine position and adjacent fetal sex affects fetal and placental growth throughout gestation, but not embryonic viability, in pigs selected for component traits of litter size. Anim Reprod Sci. 2019. https://doi.org/10.1016/j.anireprosci.2019.106139.

    Article 
    PubMed 

    Google Scholar
     

  • Altmann S, Murani E, Schwerin M, Metges CC, Wimmers K, Ponsuksili S. Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-SMC subunits of condensin I in liver and skeletal muscle. Epigenetics. 2012;7(3):239–52. https://doi.org/10.4161/epi.7.3.19183.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. Transcriptional response of skeletal muscle to a low-protein gestation diet in porcine offspring accumulates in growth- and cell cycle-regulating pathways. Physiol Genomics. 2012;44(16):811–8. https://doi.org/10.1152/physiolgenomics.00050.2012.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Oster M, Trakooljul N, Reyer H, Zeyner A, Muráni E, Ponsuksili S, et al. Sex-specific muscular maturation responses following prenatal exposure to methylation-related micronutrients in pigs. Nutrients. 2017;9:1. https://doi.org/10.3390/nu9010074.

    CAS 
    Article 

    Google Scholar
     

  • Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet. 1998;20:163–9.

    CAS 
    Article 

    Google Scholar
     

  • Lau MM, Stewart CE, Liu Z, Bhatt H, Rotwein P, Stewart CL. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994;8:2953–63.

    CAS 
    Article 

    Google Scholar
     

  • Shirtcliff EA, Lubach GR, Mooney R, Beck RT, Fanning LK, Coe CL. Transgenerational propensities for infant birth weight reflect fetal growth history of the mother in rhesus monkeys. Trends Dev Biol. 2019;12:55–65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji Y, Wu ZL, Dai ZL, Sun KJ, Wang JJ, Wu G. Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem. 2016;27:1–8. https://doi.org/10.1016/j.jnutbio.2015.08.003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300.


    Google Scholar
     

  • Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28(10):1353–8. https://doi.org/10.1093/bioinformatics/bts163.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadlich F, Reyer H, Oster M, Trakooljul N, Muráni E, Ponsuksili S, et al. rePROBE: workflow for revised probe assignment and updated probe-set annotation in microarrays. Genom Proteom Bioinform. 2021. https://doi.org/10.1016/j.gpb.2020.06.007.

    Article 

    Google Scholar
     

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9.

    CAS 
    Article 

    Google Scholar
     

  • Deasy BM, Lu A, Tebbets JC, Feduska JM, Schugar RC, Pollett JB, et al. A role for cell sex in stem cell-mediated skeletal muscle regeneration: female cells have higher muscle regeneration efficiency. J Cell Biol. 2007;177(1):73–86. https://doi.org/10.1083/jcb.200612094.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faralli H, Wang C, Nakka K, Benyoucef A, Sebastian S, Zhuang L, et al. UTX demethylase activity is required for satellite cell-mediated muscle regeneration. J Clin Invest. 2016;126(4):1555–65. https://doi.org/10.1172/jci83239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davegårdh C, Hall Wedin E, Broholm C, Henriksen TI, Pedersen M, Pedersen BK, et al. Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Res Ther. 2019;10(1):26. https://doi.org/10.1186/s13287-018-1118-4.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Contreras C, Madsen O, Groenen MAM, López-García A, Vázquez-Gómez M, Astiz S, et al. Impact of genotype, body weight and sex on the prenatal muscle transcriptome of Iberian pigs. PLoS ONE. 2020;15(1):e0227861. https://doi.org/10.1371/journal.pone.0227861.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Te Pas MF, De Wit AA, Priem J, Cagnazzo M, Davoli R, Russo V, et al. Transcriptome expression profiles in prenatal pigs in relation to myogenesis. J Muscle Res Cell Motil. 2005;26(2–3):157–65. https://doi.org/10.1007/s10974-005-7004-6.

    CAS 
    Article 

    Google Scholar
     

  • Kassam I, Wu Y, Yang J, Visscher PM, McRae AF. Tissue-specific sex differences in human gene expression. Hum Mol Genet. 2019;28(17):2976–86. https://doi.org/10.1093/hmg/ddz090.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478(7370):483–9. https://doi.org/10.1038/nature10523.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown LD, Rozance PJ, Bruce JL, Friedman JE, Hay WWJ, Wesolowski SR. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2015;309(8):920–8.

    Article 

    Google Scholar
     

  • Frum T, Ralston A. Visualizing HIPPO signaling components in mouse early embryonic development. Methods Mol Biol. 2019;1893:335–52. https://doi.org/10.1007/978-1-4939-8910-2_25.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lorthongpanich C, Issaragrisil S. Emerging role of the hippo signaling pathway in position sensing and lineage specification in mammalian preimplantation embryos. Biol Reprod. 2015;92(6):143. https://doi.org/10.1095/biolreprod.114.127803.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ikeda M, Myungchull R, Chin WW. Thyroid hormone receptor monomer, homodimer, and heterodimer (with retinoid-X receptor) contact different nucleotide sequences in thyroid hormone response elements. Endocrinology. 1994;135:1628–38.

    CAS 
    Article 

    Google Scholar
     

  • Ortega FJ, Vazquez-Martin A, Moreno-Navarrete JM, Bassols J, Rodriguez-Hermosa J, Gironés J, et al. Thyroid hormone responsive Spot 14 increases during differentiation of human adipocytes and its expression is down-regulated in obese subjects. Int J Obes (Lond). 2010;34(3):487–99.

    CAS 
    Article 

    Google Scholar
     

  • Hudson NJ, Reverter A, Greenwood PL, Guo B, Cafe LM, Dalrymple BP. Longitudinal muscle gene expression patterns associated with differential intramuscular fat in cattle. Animal. 2015;9(4):650–9.

    CAS 
    Article 

    Google Scholar
     

  • Anderson GW, Zhu Q, Metkowski J, Stack MJ, Gopinath S, Mariash CN. The Thrsp null mouse (Thrsp(tm1cnm)) and diet-induced obesity. Mol Cell Endocrinol. 2009;302(1):99–107. https://doi.org/10.1016/j.mce.2009.01.005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woollett LA. Maternal cholesterol in fetal development: transport of cholesterol from the maternal to the fetal circulation. Am J Clin Nutr. 2005;82:1155–61.

    CAS 
    Article 

    Google Scholar
     

  • Wilentz RE, Witters LA, Pizer ES. Lipogenic enzymes fatty acid synthase and acetyl-coenzyme A carboxylase are coexpressed with sterol regulatory element binding protein and Ki-67 in fetal tissues. Pediatr Dev Pathol. 2000;3:525–31.

    CAS 
    Article 

    Google Scholar
     

  • Carreras-Badosa G, Prats-Puig A, Puig T, Vázquez-Ruíz M, Bruel M, Mendoza E, et al. Circulating Fatty Acid Synthase in pregnant women: relationship to blood pressure, maternal metabolism and newborn parameters. Sci Rep. 2016;6:24167. https://doi.org/10.1038/srep24167.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayas MD, Ortega FJ, Macías-González M, Bernal R, Gómez-Huelgas R, Fernández-Real JM, et al. Inverse relation between FASN expression in human adipose tissue and the insulin resistance level. Nutr Metab. 2010;7:3. https://doi.org/10.1186/1743-7075-7-3.

    CAS 
    Article 

    Google Scholar
     

  • Choi JH, Kang M, Kim GH, Hong M, Jin HY, Lee BH, et al. Clinical and functional characteristics of a novel heterozygous mutation of the IGF1R gene and IGF1R haploinsufficiency due to terminal 15q26.2->qter deletion in patients with intrauterine growth retardation and postnatal catch-up growth failure. J Clin Endocrinol Metab. 2010;96(1):E130–4. https://doi.org/10.1210/jc.2010-1789.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plosch T. The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biol Reprod. 2013;88(1):24. https://doi.org/10.1095/biolreprod.112.102442.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Williams PJ, Marten N, Wilson V, Litten-Brown JC, Corson AM, Clarke L, et al. Influence of birth weight on gene regulators of lipid metabolism and utilization in subcutaneous adipose tissue and skeletal muscle of neonatal pigs. Reproduction. 2009;138(3):609–17.

    CAS 
    Article 

    Google Scholar
     

  • Cicchillitti L, Di Stefano V, Isaia E, Crimaldi L, Fasanaro P, Ambrosino V, et al. Hypoxia-inducible factor 1-α induces miR-210 in normoxic differentiating myoblasts. J Biol Chem. 2012;287(53):44761–71.

    CAS 
    Article 

    Google Scholar
     

  • Chen Z, Li Y, Zhang H, Huang P, Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29:4362–8.

    CAS 
    Article 

    Google Scholar
     

  • Liu X, Trakooljul N, Hadlich F, Muráni E, Wimmers K, Ponsuksili S. MicroRNA-mRNA regulatory networking fine-tunes the porcine muscle fiber type, muscular mitochondrial respiratory and metabolic enzyme activities. BMC Genomics. 2016;17:531. https://doi.org/10.1186/s12864-016-2850-8.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian X, Liu J, Yang Q, Liu Y, Jia W, Zhang X, et al. MicroRNA-210 regulates placental adaptation to maternal hypoxic stress during pregnancy. Biol Reprod. 2021;104(2):418–29. https://doi.org/10.1093/biolre/ioaa187.

    Article 
    PubMed 

    Google Scholar
     

  • Huang CW, Li YH, Hu SY, Chi JR, Lin GH, Lin CC, et al. Differential expression patterns of growth-related microRNAs in the skeletal muscle of Nile tilapia (Oreochromis niloticus). J Anim Sci. 2012;90(12):4266–79. https://doi.org/10.2527/jas.2012-5142.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sohi G, Revesz A, Ramkumar J, Hardy DB. Higher hepatic miR-29 expression in undernourished male rats during the postnatal period targets the long-term repression of IGF-1. Endocrinology. 2015;156(9):3069–76. https://doi.org/10.1210/en.2015-1058.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dooley J, Garcia-Perez JE, Sreenivasan J, Schlenner SM, Vangoitsenhoven R, Papadopoulou AS, et al. The microRNA-29 family dictates the balance between homeostatic and pathological glucose handling in diabetes and obesity. Diabetes. 2016;65(1):53–61. https://doi.org/10.2337/db15-0770.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • McGregor RA, Choi MS. microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med. 2011;11(4):304–16. https://doi.org/10.2174/156652411795677990.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Zhang Y, Su X, Wang H, Yang W, Zan L. Cooperative and independent functions of the miR-23a~ 27a–24–2 cluster in bovine adipocyte adipogenesis. Int J Mol Sci. 2018;19:3957. https://doi.org/10.3390/ijms19123957.

    Article 
    PubMed Central 

    Google Scholar
     

  • Huang Q, Ding J, Gong M, Wei M, Zhao Q, Yang J. Effect of miR-30e regulating NK cell activities on immune tolerance of maternal-fetal interface by targeting PRF1. Biomed Pharmacother. 2019;109:1478–87. https://doi.org/10.1016/j.biopha.2018.09.172.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7. https://doi.org/10.1038/ng.3538.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kordas G, Rudra P, Hendricks A, Saba L, Kechris K. Insight into genetic regulation of miRNA in mouse brain. BMC Genomics. 2019;20:849. https://doi.org/10.1186/s12864-019-6110-6.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Wang Y, Wang H, Ma X, Zan L. MicroRNA-224 impairs adipogenic differentiation of bovine preadipocytes by targeting LPL. Mol Cell Probes. 2019;44:29–36. https://doi.org/10.1016/j.mcp.2019.01.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wittenburg D, Guiard V, Teuscher F, Reinsch N. Analysis of birth weight variability in pigs with respect to liveborn and total born offspring. J Anim Breed Genet. 2011;128(5):35–43. https://doi.org/10.1111/j.1439-0388.2010.00880.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Damgaard LH, Rydhmer L, Løvendahl P, Grandinson K. Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J Anim Sci. 2003;81(3):604–10.

    CAS 
    Article 

    Google Scholar
     

  • Matheson SM, Walling GA, Edwards SA. Genetic selection against intrauterine growth retardation in piglets: a problem at the piglet level with a solution at the sow level. Genet Sel Evol. 2018;50(1):46. https://doi.org/10.1186/s12711-018-0417-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. https://doi.org/10.1038/nature08494.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Prendes R, Quintanilla R, Cánovas A, Manunza A, Figueiredo Cardoso T, Jordana J, et al. Joint QTL mapping and gene expression analysis identify positional candidate genes influencing pork quality traits. Sci Rep. 2017;7:39830. https://doi.org/10.1038/srep39830.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langenbacher AD, Nguyen CT, Cavanaugh AM, Huang J, Lu F, Chen JN. The PAF1 complex differentially regulates cardiomyocyte specification. Dev Biol. 2011;353(1):19–28. https://doi.org/10.1016/j.ydbio.2011.02.011.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, et al. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol. 2016;17(12):1352–60. https://doi.org/10.1038/ni.3575.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fougerousse F, Durand M, Suel L, Pourquié O, Delezoide AL, Romero NB, et al. Expression of genes (CAPN3, SGCA, SGCB, and TTN) involved in progressive muscular dystrophies during early human development. Genomics. 1998;48(2):145–56. https://doi.org/10.1006/geno.1997.5160.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liang WC, Chou PC, Hung CC, Su YN, Kan TM, Chen WZ, et al. Probable high prevalence of limb-girdle muscular dystrophy type 2D in Taiwan. J Neurol Sci. 2016;362:304–8. https://doi.org/10.1016/j.jns.2016.02.002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)