• Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, et al. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol. 2008;79(1):12–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, et al. Review on strategies and Technologies for Exosome Isolation and Purification. Front Bioeng Biotechnol. 2022;9:811971.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–45 e418.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Logozzi M, Di Raimo R, Mizzoni D, Fais S. What we know on the potential use of exosomes for nanodelivery. In: Seminars in Cancer Biology. Academic Press; 2021.

  • Mortaz E, Alipoor SD, Varahram M, Jamaati H, Garssen J, Mumby SE, et al. Exosomes in severe asthma: update in their roles and potential in therapy. BioMed Res Int. 2018;2018.

  • Wu R, Gao W, Yao K, Ge J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front Immunol. 2019;10:648.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Skottvoll FS, Berg HE, Bjørseth K, Lund K, Roos N, Bekhradnia S, et al. Ultracentrifugation versus kit exosome isolation: nanoLC–MS and other tools reveal similar performance biomarkers, but also contaminations. Future science OA. 2018;5(1):FSO359.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tian H, Li W. Dendritic cell-derived exosomes for cancer immunotherapy: hope and challenges. Ann Transl Med. 2017;5(10).

  • Wu Z, He D, Li H. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact Mater. 2021;6(3):823–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kita S, Shimomura I. Stimulation of exosome biogenesis by adiponectin, a circulating factor secreted from adipocytes. J Biochemistry. 2021;169(2):173–9.

    CAS 
    Article 

    Google Scholar
     

  • Zhang H-G, Grizzle WE. Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res. 2011;17(5):959–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wulf G. Exosome inhibiting agents and uses thereof. In: Google Patents; 2013.


    Google Scholar
     

  • Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. In: Seminars in cancer biology: Elsevier; 2014. p. 3–13.


    Google Scholar
     

  • György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481–500.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Amini H, Rezabakhsh A, Heidarzadeh M, Hassanpour M, Hashemzadeh S, Ghaderi S, et al. An examination of the putative role of melatonin in exosome biogenesis. Front Cell Dev Biol. 2021;9:686551.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kenific CM, Zhang H, Lyden D. An exosome pathway without an ESCRT. Cell Res. 2021;31(2):105–6.

    PubMed 
    Article 

    Google Scholar
     

  • Yokoi A, Ochiya T. Exosomes and extracellular vesicles: rethinking the essential values in cancer biology. In: Seminars in Cancer Biology: Elsevier; 2021. p. 79–91.


    Google Scholar
     

  • Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9(1):1–18.

    Article 

    Google Scholar
     

  • McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA. Exosomes: mechanisms of uptake. J Circulating Biomarkers. 2015;4:7.

    Article 
    CAS 

    Google Scholar
     

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication and Signaling. 2021;19(1):1–19.

    Article 
    CAS 

    Google Scholar
     

  • Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Affabris E, Baur A, et al. Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4+ T lymphocytes to replicate HIV-1 through a Nef-and ADAM17-dependent mechanism. J Virol. 2014;88(19):11529–39.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Viaud S, Terme M, Flament C, Taieb J, André F, Novault S, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Rα. PLoS One. 2009;4(3):e4942.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S. Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes. Nat Immunol. 2002;3(12):1156–62.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lindenbergh MF, Wubbolts R, Borg EG, van’t Veld EM, Boes M, Stoorvogel W. Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation. J Extracell Vesicles. 2020;9(1):1798606.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lindenbergh MF, Koerhuis DG, Borg EG, van’t Veld EM, Driedonks TA, Wubbolts R, et al. Bystander T-cells support clonal T-cell activation by controlling the release of dendritic cell-derived immune-stimulatory extracellular vesicles. Front Immunol. 2019;10:448.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim SH, Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther. 2006;13(2):289–300.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miyasaka K, Hanayama R, Tanaka M, Nagata S. Expression of milk fat globule epidermal growth factor 8 in immature dendritic cells for engulfment of apoptotic cells. Eur J Immunol. 2004;34(5):1414–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pitt JM, André F, Amigorena S, Soria J-C, Eggermont A, Kroemer G, et al. Dendritic cell–derived exosomes for cancer therapy. J Clin Invest. 2016;126(4):1224–32.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Silva AM, Almeida MI, Teixeira JH, Maia AF, Calin GA, Barbosa MA, et al. Dendritic cell-derived extracellular vesicles mediate mesenchymal stem/stromal cell recruitment. Sci Rep. 2017;7(1):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG, et al. The potential use of mesenchymal stem cells and their derived exosomes for orthopedic diseases treatment. Stem Cell Rev Rep. 2021:1–19. https://doi.org/10.1007/s12015-021-10185-z.

  • Bianco NR, Kim S-H, Morelli AE, Robbins PD. Modulation of the immune response using dendritic cell-derived exosomes. In: Immunological Tolerance: Springer; 2007. p. 443–55.


    Google Scholar
     

  • Wang G, Jin S, Ling X, Li Y, Hu Y, Zhang Y, et al. Proteomic profiling of LPS-induced macrophage-derived exosomes indicates their involvement in acute liver injury. Proteomics. 2019;19(3):1800274.

    Article 
    CAS 

    Google Scholar
     

  • Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res. 2017;40(4):353–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Depeille P, Henricks LM, Van De Ven RA, Lemmens E, Wang C-Y, Matli M, et al. RasGRP1 opposes proliferative EGFR–SOS1–Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol. 2015;17(6):804–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang C, Zhang C, Liu L, Xi A, Chen B, Li Y, et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 2017;25(1):192–204.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R, et al. Functional significance of macrophage-derived exosomes in inflammation and pain. PAIN®. 2014;155(8):1527–39.

    CAS 
    Article 

    Google Scholar
     

  • Hung Y-Y, Chou C-K, Yang Y-C, Fu H-C, Loh E-W, Kang H-Y. Exosomal let-7e, miR-21-5p, miR-145, miR-146a and miR-155 in predicting antidepressants response in patients with major depressive disorder. Biomedicines. 2021;9(10):1428.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lan J, Sun L, Xu F, Liu L, Hu F, Song D, et al. M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res. 2019;79(1):146–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yeung CLA, Co N-N, Tsuruga T, Yeung T-L, Kwan S-Y, Leung CS, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7(1):1–14.


    Google Scholar
     

  • Ma Y-S, Wu T-M, Ling C-C, Yu F, Zhang J, Cao P-S, et al. M2 macrophage-derived exosomal microRNA-155-5p promotes the immune escape of colon cancer by downregulating ZC3H12B. Mol Ther Oncolytics. 2021;20:484–98.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vargas A, Roux-Dalvai F, Droit A, Lavoie J-P. Neutrophil-derived exosomes: a new mechanism contributing to airway smooth muscle remodeling. Am J Respir Cell Mol Biol. 2016;55(3):450–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rossaint J, Kühne K, Skupski J, Van Aken H, Looney MR, Hidalgo A, et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat Commun. 2016;7(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25(1):1–15.

    Article 

    Google Scholar
     

  • Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol. 2003;170(6):3037–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li F, Wang Y, Lin L, Wang J, Xiao H, Li J, et al. Mast cell-derived exosomes promote Th2 cell differentiation via OX40L-OX40 ligation. J Immunol Res. 2016;2016.

  • Al-Nedawi K, Szemraj J, Cierniewski CS. Mast Cell–Derived Exosomes Activate Endothelial Cells to Secrete Plasminogen Activator Inhibitor Type 1. Arterioscler Thromb Vasc Biol. 2005;25(8):1744–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao H, Lässer C, Shelke GV, Wang J, Rådinger M, Lunavat TR, et al. Mast cell exosomes promote lung adenocarcinoma cell proliferation–role of KIT-stem cell factor signaling. Cell Commun Signal. 2014;12(1):1–10.

    Article 
    CAS 

    Google Scholar
     

  • Cañas JA, Sastre B, Mazzeo C, Fernández-Nieto M, Rodrigo-Muñoz JM, González-Guerra A, et al. Exosomes from eosinophils autoregulate and promote eosinophil functions. J Leukoc Biol. 2017;101(5):1191–9.

    PubMed 
    Article 

    Google Scholar
     

  • Cañas J, Sastre B, Rodrigo-Muñoz J, Fernández-Nieto M, Barranco P, Quirce S, et al. Eosinophil-derived exosomes contribute to asthma remodelling by activating structural lung cells. Clin Exp Allergy. 2018;48(9):1173–85.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Cañas JA, Sastre B, Rodrigo-Muñoz JM, Del Pozo V. Exosomes: a new approach to asthma pathology. Clin Chim Acta. 2019;495:139–47.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Mazzeo C, Cañas JA, Zafra MP, Marco AR, Fernández-Nieto M, Sanz V, et al. Exosome secretion by eosinophils: a possible role in asthma pathogenesis. J Allergy Clin Immunol. 2015;135(6):1603–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, et al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 2012;189(6):2833–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shoae-Hassani A, Hamidieh AA, Behfar M, Mohseni R, Mortazavi-Tabatabaei SA, Asgharzadeh S. NK cell–derived exosomes from NK cells previously exposed to neuroblastoma cells augment the antitumor activity of cytokine-activated NK cells. J Immunother. 2017;40(7):265–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu L, Kalimuthu S, Gangadaran P, Oh JM, Lee HW, Baek SH, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 2017;7(10):2732.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fais S. NK cell-released exosomes: natural nanobullets against tumors. Oncoimmunology. 2013;2(1):e22337.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Enomoto Y, Li P, Jenkins LM, Anastasakis D, Lyons GC, Hafner M, et al. Cytokine-enhanced cytolytic activity of exosomes from NK Cells. Cancer Gene Ther. 2021:1–16.

  • Knight AM. Regulated release of B cell-derived exosomes: Do differences in exosome release provide insight into different APC function for B cells and DC? Eur J Immunol. 2008;38(5):1186–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius A, et al. B cell–derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol. 2007;120(6):1418–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Möbius W, Hoernschemeyer J, et al. Proteomic and biochemical analyses of human B cell-derived exosomes potential implications for their function and multivesicular body formation. J Biol Chem. 2003;278(13):10963–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clayton A, Turkes A, Dewitt S, Steadman R, Mason MD, Hallett MB. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004;18(9):977–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Admyre C, Johansson SM, Paulie S, Gabrielsson S. Direct exosome stimulation of peripheral humanT cells detected by ELISPOT. Eur J Immunol. 2006;36(7):1772–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. Induction of heat shock proteins in B-cell exosomes. J Cell Sci. 2005;118(16):3631–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ventimiglia LN, Alonso MA. Biogenesis and function of T cell-derived exosomes. Front Cell Dev Biol. 2016;4:84.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu J, Wu J, Tian J, Wang S. Role of T cell-derived exosomes in immunoregulation. Immunol Res. 2018;66(3):313–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wahlgren J, Karlson TDL, Glader P, Telemo E, Valadi H. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One. 2012;7(11):e49723.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2(1):1–10.

    Article 
    CAS 

    Google Scholar
     

  • Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, et al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 2012;188(12):5954–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R, et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 2013;43(9):2430–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014;41(1):89–103.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 2018;8(1):1–12.


    Google Scholar
     

  • Wang X, Shen H, He Q, Tian W, Xia A, Lu X-J. Exosomes derived from exhausted CD8+ T cells impaired the anticancer function of normal CD8+ T cells. J Med Genet. 2019;56(1):29–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen J, Song Y, Miao F, Chen G, Zhu Y, Wu N, et al. PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8+ T cell exhaustion during metastasis. Cancer Sci. 2021;112(9):3437.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yao H, Tian L, Yan B, Yang L, Li Y. LncRNA TP73-AS1 promotes nasopharyngeal carcinoma progression through targeting miR-342-3p and M2 polarization via exosomes. Cancer Cell Int. 2022;22(1):1–15.

    CAS 
    Article 

    Google Scholar
     

  • Obstfeld AE, Frey NV, Mansfield K, Lacey SF, June CH, Porter DL, et al. Cytokine release syndrome associated with chimeric-antigen receptor T-cell therapy: clinicopathological insights. Blood. 2017;130(23):2569–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peters PJ, Borst J, Oorschot V, Fukuda M, Krähenbühl O, Tschopp J, et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med. 1991;173(5):1099–109.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang X-J, Sun X-Y, Huang K-M, Zhang L, Yang Z-S, Zou D-D, et al. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget. 2015;6(42):44179.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jella KK, Nasti TH, Li Z, Malla SR, Buchwald ZS, Khan MK. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines. 2018;6(4):69.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li X, Tang M. Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med. 2020;9(16):5976–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou J, Li X, Wu X, Zhang T, Zhu Q, Wang X, et al. Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res. 2018;6(12):1578–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chan CK, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, et al. Identification of the human skeletal stem cell. Cell. 2018;175(1):43–56 e21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rashid MH, Borin TF, Ara R, Piranlioglu R, Achyut BR, Korkaya H, et al. The critical immunosuppressive effect of MDSC-derived exosomes in the tumor microenvironment. In: bioRxiv; 2020.


    Google Scholar
     

  • Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10(1):117.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng P, Luo Q, Wang W, Li J, Wang T, Wang P, et al. Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional apolipoprotein E. Cell Death Dis. 2018;9(4):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Si M, Zhu S, Wu H, Lu Z, Wu F, Mo Y. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799–803.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 2019;21(4):498–510.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134(5):703–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, et al. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol. 2016;1(1):aaf8759.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, et al. Donor dendritic cell–derived exosomes promote allograft-targeting immune response. J Clin Invest. 2016;126(8):2805–20.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C, Dugave C, et al. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology. 2007;132(5):1866–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hwang B, Bryers J, Mulligan MS. Potential role of exosome-based allorecognition pathways involved in lung transplant rejection: Elsevier; 2020.


    Google Scholar
     

  • Lin J, Wang H, Liu C, Cheng A, Deng Q, Zhu H, et al. Dendritic cells: versatile players in renal transplantation. Front Immunol. 2021;12:1669.


    Google Scholar
     

  • Lakkis FG, Li XC. Innate allorecognition by monocytic cells and its role in graft rejection. Am J Transplant. 2018;18(2):289–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chow KV, Delconte RB, Huntington ND, Tarlinton DM, Sutherland RM, Zhan Y, et al. Innate allorecognition results in rapid accumulation of monocyte-derived dendritic cells. J Immunol. 2016;197(5):2000–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brusselle GG, Koppelman GH. Biologic therapies for severe asthma. N Engl J Med. 2022;386(2):157–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Engeroff P, Vogel M. The potential of exosomes in allergy immunotherapy. Vaccines. 2022;10(1):133.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang L, Zhang X, Wang M, Chen Z, Yan Y, Gu W, et al. Exosomes from thymic stromal lymphopoietin-activated dendritic cells promote Th2 differentiation through the OX40 ligand. Pathobiology. 2019;86(2-3):111–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lahiri D, Nag M, Dey A, Sarkar T, Pattnaik S, Ghosh S, et al. Exosome-associated host–pathogen interaction: a potential effect of biofilm formation. J Analyt Sci Technol. 2021;12(1):1–8.

    Article 
    CAS 

    Google Scholar
     

  • Rezaie J, Aslan C, Ahmadi M, Zolbanin NM, Kashanchi F, Jafari R. The versatile role of exosomes in human retroviral infections: from immunopathogenesis to clinical application. Cell Biosci. 2021;11(1):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, et al. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain tax protein. J Biol Chem. 2014;289(32):22284–305.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matsuoka M, Jeang K-T. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene. 2011;30(12):1379–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arien KK, Verhasselt B. HIV Nef: role in pathogenesis and viral fitness. Curr HIV Res. 2008;6(3):200–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aqil M, Mallik S, Bandyopadhyay S, Maulik U, Jameel S. Transcriptomic analysis of mRNAs in human monocytic cells expressing the HIV-1 Nef protein and their exosomes. Biomed Res Int. 2015;2015:492395.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li L, Gu B, Zhou F, Chi J, Wang F, Peng G, et al. Human herpesvirus 6 suppresses T cell proliferation through induction of cell cycle arrest in infected cells in the G2/M phase. J Virol. 2011;85(13):6774–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic. 2008;9(10):1728–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guay C, Kruit JK, Rome S, Menoud V, Mulder NL, Jurdzinski A, et al. Lymphocyte-derived exosomal micrornas promote pancreatic β cell death and may contribute to type 1 diabetes development. Cell Metab. 2019;29(2):348–61 e346.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Shi L, Mei H, Zhang J, Zhu Y, Han X, et al. Inflamed macrophage microvesicles induce insulin resistance in human adipocytes. Nutr Metab. 2015;12(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Laman JD, Huizinga R, Boons G-J, Jacobs BC. Guillain-Barré syndrome: expanding the concept of molecular mimicry. Trends Immunol. 2022;43(4):296–308.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Du T, Yang C-L, Ge M-R, Liu Y, Zhang P, Li H, et al. M1 macrophage derived exosomes aggravate experimental autoimmune neuritis via modulating Th1 response. Front Immunol. 2020;11:1603.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Azimi M, Ghabaee M, Moghadasi AN, Izad M. Altered expression of miR-326 in T cell-derived exosomes of patients with relapsing-remitting multiple sclerosis. Iran J Allergy Asthma Immunol. 2019;18(1):108–13.

    PubMed 

    Google Scholar
     

  • Wu W-C, Song S-J, Zhang Y, Li X. Role of extracellular vesicles in autoimmune pathogenesis. Front Immunol. 2020;11:2310.


    Google Scholar
     

  • Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain. 2009;132(12):3342–52.

    PubMed 
    Article 

    Google Scholar
     

  • Dai Phung C, Pham TT, Nguyen HT, Nguyen TT, Ou W, Jeong J-H, et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater. 2020;115:371–82.

    Article 
    CAS 

    Google Scholar
     

  • Zhu J, Chen Z, Wang Q, Guo J, Ma L, Shi H, et al. Exosome-derived circITGB1 regulates dendritic cell maturation and cardiac inflammation via miR-342-3p/NFAM1; 2020.


    Google Scholar
     

  • Elashiry M, Elashiry MM, Elsayed R, Rajendran M, Auersvald C, Zeitoun R, et al. Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo. J Extracell Vesicles. 2020;9(1):1795362.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu S, Chen J, Shi J, Zhou W, Wang L, Fang W, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol. 2020;115(2):1–17.

    Article 
    CAS 

    Google Scholar
     

  • Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10(23):10712.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li L, Zuo X, Xiao Y, Liu D, Luo H, Zhu H. Neutrophil-derived exosome from systemic sclerosis inhibits the proliferation and migration of endothelial cells. Biochem Biophys Res Commun. 2020;526(2):334–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matsumoto H. Bronchiectasis in severe asthma and asthmatic components in bronchiectasis. Respir Investig. 2021.

  • Sastre B, Cañas JA, Rodrigo-Muñoz JM, Fernandez-Nieto M, Barranco P, Quirce S, et al. Eosinophil-derived exosomes contribute to asthma remodeling by activating structural lung cells. J Allergy Clin Immunol. 2018;141(2):AB72.

    Article 

    Google Scholar
     

  • Li D, Wang Y, Jin X, Hu D, Xia C, Xu H, et al. NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation. 2020;17:1–19.

    Article 
    CAS 

    Google Scholar
     

  • Kornbluth J. Treatment of cancer and infectious diseases with natural killer (nk) cell-derived exosomes. In: Google Patents; 2020.


    Google Scholar
     

  • Nisticò N, Maisano D, Iaccino E, Vecchio E, Fiume G, Rotundo S, et al. Role of chronic lymphocytic leukemia (CLL)-derived exosomes in tumor progression and survival. Pharmaceuticals. 2020;13(9):244.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hu H, Wu J, Cao C, Ma L. Exosomes derived from regulatory T cells ameliorate acute myocardial infarction by promoting macrophage M2 polarization. IUBMB Life. 2020;72(11):2409–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fu W, Lei C, Liu S, Cui Y, Wang C, Qian K, et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun. 2019;10(1):1–12.

    Article 
    CAS 

    Google Scholar
     

  • Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. In: Seminars in Cancer Biology: Elsevier; 2022.


    Google Scholar
     

  • Markov O, Oshchepkova A, Mironova N. Immunotherapy based on dendritic cell-targeted/−derived extracellular vesicles—a novel strategy for enhancement of the anti-tumor immune response. Front Pharmacol. 2019;10:1152.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of theCytokine Storm’in COVID-19. J Infect. 2020;80(6):607–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hosseini NF, Dalirfardouei R, Aliramaei MR, Najafi R. Stem cells or their exosomes: which is preferred in COVID-19 treatment? Biotechnol Lett. 2022:1–19.

  • Romagnoli GG, Toniolo PA, Migliori IK, Caldini ÉG, Ferreira MA, Pizzo CR, et al. Tumour cells incorporate exosomes derived from dendritic cells through a mechanism involving the tetraspanin CD9. Exosomes Microvesicles. 2013;1:4.


    Google Scholar
     

  • Romagnoli GG, Zelante BB, Toniolo PA, Migliori IK, Barbuto JAM. Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets. Front Immunol. 2015;5:692.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Choi S-J, Cho H, Yea K, Baek M-C. Immune cell-derived small extracellular vesicles in cancer treatment. BMB Rep. 2022;55(1):48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Elashiry M, Elsayed R, Cutler CW. Exogenous and endogenous dendritic cell-derived exosomes: lessons learned for immunotherapy and disease pathogenesis. Cells. 2021;11(1):115.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li J, Huang S, Zhou Z, Lin W, Chen S, Chen M, et al. Exosomes derived from rAAV/AFP-transfected dendritic cells elicit specific T cell-mediated immune responses against hepatocellular carcinoma. Cancer Manag Res. 2018;10:4945.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, et al. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 2017;67(4):739–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Damo M, Wilson DS, Simeoni E, Hubbell JA. TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep. 2015;5(1):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Chen S, Ou R, Tang J, Deng X, Wu Y, van Velkinburgh JC, et al. Enhanced anti-tumor effects of HPV16E749–57-based vaccine by combined immunization with poly (I: C) and oxygen-regulated protein 150. Cancer Epidemiol. 2013;37(2):172–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim HP, Morse D, Choi AM. Heat-shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets. 2006;10(5):759–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tamura Y, Torigoe T, Kukita K, Saito K, Okuya K, Kutomi G, et al. Heat-shock proteins as endogenous ligands building a bridge between innate and adaptive immunity. Immunotherapy. 2012;4(8):841–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang J, Wang Z, Mo Y, Zeng Z, Wei P, Li T. Effect of hyperthermic CO2-treated dendritic cell-derived exosomes on the human gastric cancer AGS cell line. Oncol Lett. 2015;10(1):71–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang L, Hao C, Zhai R, Wang D, Zhang J, Bao L, et al. Downregulation of exosomal let-7a-5p in dust exposed-workers contributes to lung cancer development. Respir Res. 2018;19(1):1–8.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Duan S, Yu S, Yuan T, Yao S. Exogenous let-7a-5p induces A549 lung cancer cell death through BCL2L1-mediated PI3Kγ signaling pathway. Front Oncol. 2019;9:808.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pace ALD, Tumino N, Besi F, Alicata C, Conti LA, Munari E, et al. Characterization of human NK cell-derived exosomes: role of DNAM1 receptor in exosome-mediated cytotoxicity against tumor. Cancers. 2020;12(3):661.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lettau M, Janssen O. Intra-and extracellular effector vesicles from human T and NK cells: same-same, but different? Front Immunol. 2021;12:804895.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saini RV, Wilson C, Finn MW, Wang T, Krensky AM, Clayberger C. Granulysin delivered by cytotoxic cells damages endoplasmic reticulum and activates caspase-7 in target cells. J Immunol. 2011;186(6):3497–504.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jong AY, Wu C-H, Li J, Sun J, Fabbri M, Wayne AS, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017;6(1):1294368.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guo T, Zhao L, Zhang Y, Liu G, Yao Y, Li H. A monoclonal antibody targeting the dimer interface of epidermal growth factor receptor (EGFR). Immunol Lett. 2016;180:39–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qiu L, Zhou C, Sun Y, Di W, Scheffler E, Healey S, et al. Crosstalk between EGFR and TrkB enhances ovarian cancer cell migration and proliferation. Int J Oncol. 2006;29(4):1003–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Maecker H, Varfolomeev E, Kischkel F, Lawrence D, LeBlanc H, Lee W, et al. TWEAK attenuates the transition from innate to adaptive immunity. Cell. 2005;123(5):931–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gu L, Dai L, Cao C, Zhu J, Ding C, Xu HB, et al. Functional expression of TWEAK and the receptor Fn14 in human malignant ovarian tumors: possible implication for ovarian tumor intervention. PLoS One. 2013;8(3):e57436.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu Y, Li D, Wu A, Qiu X, Di W, Huang L, et al. TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shuttling of microRNA. Cancer Lett. 2017;393:60–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ochs K, Sahm F, Opitz CA, Lanz TV, Oezen I, Couraud P-O, et al. Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J Neuroimmunol. 2013;265(1-2):106–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seo N, Shirakura Y, Tahara Y, Momose F, Harada N, Ikeda H, et al. Activated CD8+ T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat Commun. 2018;9(1):1–11.

    Article 
    CAS 

    Google Scholar
     

  • Guo W, Li Y, Pang W, Shen H. Exosomes: a potential therapeutic tool targeting communications between tumor cells and macrophages. Mol Ther. 2020;28(9):1953–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang H, Zhou L, Shen N, Ning X, Wu D, Jiang K, et al. M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis. 2022;13(2):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Neviani P, Wise PM, Murtadha M, Liu CW, Wu C-H, Jong AY, et al. Natural killer–derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res. 2019;79(6):1151–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang X, Liu L, Tang M, Li H, Guo X, Yang X. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. Drug Dev Ind Pharm. 2020;46(7):1150–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron. 2010;65(5):597–611.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci. 2008;28(45):11720–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Budde H, Schmitt S, Fitzner D, Opitz L, Salinas-Riester G, Simons M. Control of oligodendroglial cell number by the miR-17-92 cluster. Development. 2010;137(13):2127–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pusic AD, Pusic KM, Clayton BL, Kraig RP. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J Neuroimmunol. 2014;266(1-2):12–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu L, Yang F, Jiang L, Chen Y, Wang K, Xu F, et al. Exosomes with membrane-associated TGF-β1 from gene-modified dendritic cells inhibit murine EAE independently of MHC restriction. Eur J Immunol. 2013;43(9):2461–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Azimi M, Ghabaee M, Moghadasi AN, Noorbakhsh F, Izad M. Immunomodulatory function of Treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis. Immunol Res. 2018;66(4):513–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bu N, Wu H-Q, Zhang G-L, Zhan S-Q, Zhang R, Fan Q-Y, et al. Immature dendritic cell exosomes suppress experimental autoimmune myasthenia gravis. J Neuroimmunol. 2015;285:71–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yin W, Ouyang S, Luo Z, Zeng Q, Hu B, Xu L, et al. Immature exosomes derived from microRNA-146a overexpressing dendritic cells act as antigen-specific therapy for myasthenia gravis. Inflammation. 2017;40(4):1460–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zöller M. Janus-faced myeloid-derived suppressor cell exosomes for the good and the bad in cancer and autoimmune disease. Front Immunol. 2018;9:137.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Tian J, Tang X, Rui K, Tian X, Ma J, et al. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget. 2016;7(13):15356.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim SH, Bianco NR, Shufesky WJ, Morelli AE, Robbins PD. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J Immunol. 2007;179(4):2242–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blois S, Tometten M, Kandil J, Hagen E, Klapp BF, Margni RA, et al. Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies. J Immunol. 2005;174(4):1820–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bianco NR, Kim SH, Ruffner MA, Robbins PD. Therapeutic effect of exosomes from indoleamine 2, 3-dioxygenase–positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum. 2009;60(2):380–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ono Y, Perez-Gutierrez A, Nakao T, Dai H, Camirand G, Yoshida O, et al. Graft-infiltrating PD-L1hi cross-dressed dendritic cells regulate antidonor T cell responses in mouse liver transplant tolerance. Hepatology. 2018;67(4):1499–515.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu X, Huang C, Song B, Xiao Y, Fang M, Feng J, et al. CD4+ CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol. 2013;285(1-2):62–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Agarwal A, Fanelli G, Letizia M, Tung SL, Boardman D, Lechler R, et al. Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front Immunol. 2014;5:555.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bandyopadhyay S, Friedman RC, Marquez RT, Keck K, Kong B, Icardi MS, et al. Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. J Infect Dis. 2011;203(12):1753–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Segura E, Guérin C, Hogg N, Amigorena S, Théry C. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol. 2007;179(3):1489–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sobo-Vujanovic A, Munich S, Vujanovic NL. Dendritic-cell exosomes cross-present Toll-like receptor-ligands and activate bystander dendritic cells. Cell Immunol. 2014;289(1-2):119–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yao Y, Fu C, Zhou L, Mi Q-S, Jiang A. DC-derived exosomes for cancer immunotherapy. Cancers. 2021;13(15):3667.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith VL, Cheng Y, Bryant BR, Schorey JS. Exosomes function in antigen presentation during an in vivo mycobacterium tuberculosis infection. Sci Rep. 2017;7:43578.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang J, Deng Z, Wang Z, Wu J, Gu T, Jiang Y, et al. MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Transl Res. 2016;8(9):3700.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues M, Fan J, Lyon C, Wan M, Hu Y. Role of extracellular vesicles in viral and bacterial infections: pathogenesis, diagnostics, and therapeutics. Theranostics. 2018;8(10):2709.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lecce M, Molfetta R, Milito ND, Santoni A, Paolini R. FcεRI signaling in the modulation of allergic response: role of mast cell-derived exosomes. Int J Mol Sci. 2020;21(15):5464.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xie G, Yang H, Peng X, Lin L, Wang J, Lin K, et al. Mast cell exosomes can suppress allergic reactions by binding to IgE. J Allergy Clin Immunol. 2018;141(2):788–91.

    PubMed 
    Article 

    Google Scholar
     

  • Li C, Deng C, Zhou T, Hu J, Dai B, Yi F, et al. MicroRNA-370 carried by M2 macrophage-derived exosomes alleviates asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Int J Biol Sci. 2021;17(7):1795.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li C, Dai B, Hu J, Shang Y. M2 macrophage-derived exosomes carry microRNA-370 to alleviate asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Exp Cell Res. 2020:112285.

  • Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41(6):835–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 2018;20(1):1.

    CAS 
    Article 

    Google Scholar
     

  • Lim SK. Method for lyophilising an exosome. In: Google Patents; 2019.


    Google Scholar
     

  • Veerman RE, Akpinar GG, Eldh M, Gabrielsson S. Immune cell-derived extracellular vesicles–functions and therapeutic applications. Trends Mol Med. 2019;25(5):382–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peng H, Ji W, Zhao R, Yang J, Lu Z, Li Y, et al. Exosome: a significant nano-scale drug delivery carrier. J Mater Chem B. 2020;8(34):7591–608.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)