• Richter MR. Social wasp (Hymenoptera: Vespidae) foraging behavior. Ann Rev Entomol. 2000. doi:https://doi.org/10.1146/annurev.ento.45.1.121.

    Article 

    Google Scholar
     

  • Rusina LY. Principles of organization of Polistinae (Hymenoptera, Vespidae) Population. Entomol Rev. 2015. doi:https://doi.org/10.1134/S0013873815080102.

    Article 

    Google Scholar
     

  • Ferreira JVA, Storck-Tonon D, da Silva RJ, Somavilla A, Pereira MNJB, da Silva DJ. Effect of habitat amount and complexity on social wasps (Vespidae: Polistinae): implications for biological control. J Insect Conserv. 2020. doi:https://doi.org/10.1007/s10841-020-00221-7.

    Article 

    Google Scholar
     

  • Carpenter JM. Distributional checklist of species of the genus Polistes (Hymenoptera: Vespidae; Polistinae, Polistini). Am Mus Nat Hist. 1996. https://doi.org/10.1016/S0020-1383(99)00074-1.

    Article 

    Google Scholar
     

  • Kojima J. Checklist and/or catalog of social wasps. 2006; http://www.ipc.ibaraki.ac.jp/~jkrte/wasp/list.html.

  • Carpenter JM, Kojima J. Catalog of Species in the Polistine tribe Ropalidiini (Hymenoptera: Vespidae). The American Museum of Natural History Central Park West. 1997; http://hdl.handle.net/2246/3597.

  • Kojima J. Web page catalog of species in the Polistine Tribe Ropalidiini (Hymenoptera:Vespidae). 2006; http://www.ipc.ibaraki.ac.jp/~jkrte/wasp/ropa/top.html.

  • Saito F, Nguyen LTP, Kojima JI. Review of the paper wasps of the Parapolybia indica species-group (Hymenoptera: Vespidae, Polistinae) in eastern parts of Asia. Zootaxa. 2015. doi:https://doi.org/10.11646/zootaxa.3947.2.5.

    Article 
    PubMed 

    Google Scholar
     

  • Gaynor ML, Fu CN, Gao LM, Lu LM, Soltis DE, Soltis PS. Biogeography and ecological niche evolution in Diapensiaceae inferred from phylogenetic analysis. J Syst Evol. 2020. Doi:https://doi.org/10.1111/jse.12646.

    Article 

    Google Scholar
     

  • Johnson AJ, McKenna DD, Jordal BH, Cognato AI, Smith SM, Lemmon AR, Moriarty Lemmon EL, Jiri Hulcr. Phylogenomics clarifies repeated evolutionary origins of inbreeding and fungus farming in bark beetles (Curculionidae, Scolytinae). Mol Phylogenet Evol. 2018. doi:https://doi.org/10.1016/jympev.2018.05.028.

    Article 
    PubMed 

    Google Scholar
     

  • Carpenter JM. The phylogenetic relationships and natural classification of the Vespoidea (Hymenoptera). Syst Entomol. 1982. doi:https://doi.org/10.1111/j.1365-31131982.tb00124.x.

    Article 

    Google Scholar
     

  • Santos BF, Paynea A, Pickett KM, Carpenter JM. Phylogeny and historical biogeography of the paper wasp genus Polistes (Hymenoptera: Vespidae): implications for the overwintering hypothesis of social evolution. Cladistics. 2014. doi:https://doi.org/10.1111/cla.12103.

    Article 
    PubMed 

    Google Scholar
     

  • Carpenter JM, Kojima J, Wenze JW. Polybia, paraphyly and polistine phylogeny. Am Museum Nat History. 2000. doi:https://doi.org/10.1206/0003-0082(2000)2982.0.CO;2.

    Article 

    Google Scholar
     

  • Cameron SL, Dowton M, Castro LR. Mitochondrial genome organization and phylogeny of two vespid wasps. Genome. 2008. doi:https://doi.org/10.1139/G08-066.

    Article 
    PubMed 

    Google Scholar
     

  • Du ZY, Hasegawa K, Cooley JR, Simon C, Yoshimura J, Cai WZ, Sota TJ, Li H. Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups. Mol Biol Evol. 2019. doi:https://doi.org/10.1093/molbev/msz051.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heraty J, Ronquist F, Carpenter JM. Evolution of the hymenopteran megaradiation. Mol Phylogenet Evol. 2011. doi:https://doi.org/10.1016/jympev.2011.04.003.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Cao JJ, Li WH. Complete mitochondrial genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and implications for the higher phylogeny of stoneflies. Int J Mol Sci. 2018. doi:https://doi.org/10.3390/ijms19030680.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro LR, Dowton M. The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of Perga condei (Hymenoptera: Symphyta: Pergidae). Mol Phylogenetics Evol. 2005. doi:https://doi.org/10.1016/jympev.2004.11.005.

    Article 

    Google Scholar
     

  • Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Ann Rev Entomol. 2014. doi:https://doi.org/10.1146/annurev-ento-011613-162007.

    Article 

    Google Scholar
     

  • Song SN, Tang P, Wei SJ, Chen XX. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Sci Rep. 2016. doi:https://doi.org/10.1038/srep20972.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng Y, Leung HCM, Yiu SM, Chin FYL. IBDA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.

    CAS 
    Article 

    Google Scholar
     

  • Patel RK, Mukesh J, Liu Z. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. 2012;7:e30619. doi:https://doi.org/10.1371/journal.pone.0030619.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst. 2006. doi:https://doi.org/10.1146/annurev.ecolsys.37.091305.110018.

    Article 

    Google Scholar
     

  • Altschup S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    Article 

    Google Scholar
     

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997. doi:https://doi.org/10.1093/nar/25.24.4876.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013. doi:https://doi.org/10.1093/molbev/mst197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics. 2005;21:537–9. https://doi.org/10.1093/bioinformatics/bti054.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Librado P, Rozas J. DnaSPv5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009. https://doi.org/10.1093/bioinformatics/btp187.

    Article 
    PubMed 

    Google Scholar
     

  • Core Team R, R: A Language and Environment for Statistical Computing, 2015; doi:https://doi.org/10.1007/978-3-540-74686-7.

  • Bernt M, Merkle D, Middendorf M. An algorithm for inferring mitogenome rearrangements in a phylogenetic tree. C.E. Nelson, Vialette S, editor, Comparative genomics, lecture notes in computer science. 2008; pp. 143–57.

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013. doi:https://doi.org/10.1093/molbev/mst010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000. doi:https://doi.org/10.1093/oxfordjournals.molbev.a026334.

    Article 
    PubMed 

    Google Scholar
     

  • Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010. doi:https://doi.org/10.1093/nar/gkq291.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Ronquist F, Teslenko M, Mark P, Ayres D, Darling A, Hohna S, Larget B, Liu L, Suchard M, Huelsenbeck J. MrBayes 3.2: efcient Bayesian phyloge netic inference and model choice across a large model space. Syst Biol. 2015;61:539–42.

    Article 

    Google Scholar
     

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascue O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010. https://doi.org/10.1093/sysbio/syq010.

    Article 
    PubMed 

    Google Scholar
     

  • Drummond AJ, Rambaut ABEAST. Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007. doi:https://doi.org/10.1186/1471-2148-7-214.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nel Auvray F. The oldest Vespinae from the Paleocene of Menat (France) (Hymenoptera: Vespidae). Zootaxa. 2006. doi:https://doi.org/10.5281/zenodo.174484.

    Article 

    Google Scholar
     

  • Carpenter JM. A vespid wasp from New Jersey Cretaceous amber. Grimaldi, D.A, editor, Studies on fossils in amber, with particular reference to the cretaceous of New Jersey, 2000; 333–337.

  • Saito F, Kojima JI, Nguyen LTP, Kanuka M. Polistes formosanus S. 1927 (Hymenoptera: Vespidae), a good species supported by both morphological and molecular phylogenetic analyses, and a key social wasp in understanding the historical biogeography of the Nansei Islands. Zool Sci. 2007. https://doi.org/10.2108/zsj.24.927.

    Article 

    Google Scholar
     

  • Dvorak L, Carpenter JM. The first record of the paper wasp Polistes smithii neavei von Schulthess, 1921, from the Middle East (Hymenoptera: Vespidae), with notes on the social wasp fauna of Yemen. Zool Middle East. 2008;44:119–20.

    Article 

    Google Scholar
     

  • Abbasi R, Mashhadikhan M, Abbasi M, Kiabi B. Geometric morphometric study of populations of the social wasp, Polistes dominulus (Christ, 1791) from Zanjan province, north-west Iran. New Z J Zool. 2009. doi:https://doi.org/10.1080/03014220909510138.

    Article 

    Google Scholar
     

  • Eardley C, Koch F, Wood AR. Polistes dominulus (Christ, 1791) (Hymenoptera: Polistinae: Vespidae) newly recorded from South Africa. Afr Entomol. 2009. doi:https://doi.org/10.4001/003.017.0214.

    Article 

    Google Scholar
     

  • Madden AA, Davis MM, Starks PT. First detailed report of brood parasitoidism in the invasive population of the paper wasp Polistes dominulus (Hymenoptera, Vespidae) in North America. Insectes Sociaux. 2010. doi:https://doi.org/10.1007/s00040-010-0079-0.

    Article 

    Google Scholar
     

  • Cranshaw WS, Larsen HJ, Zimmerman RJ. Notes on fruit damage by the European paper wasp, Polistes dominula (Christ) (Hymenoptera: Vespidae). Southwest Entomol. 2011. doi:https://doi.org/10.3958/059.036.0110.

    Article 

    Google Scholar
     

  • Nguyen LTP, Kojima J, Saito F. Polistes (Polistella) wasps (Hymenoptera: Vespidae: Polistinae) from mountainous areas of northern Vietnam, with description of five new species. Zootaxa. 2011. doi:https://doi.org/10.11646/zootaxa.3060.1.1.

    Article 

    Google Scholar
     

  • Bagriacik N. Some structural features of nest materials of Polistes nimpha (Christ, 1791) in several ecological conditions (Hymenoptera: Vespidae). J Entomol Res Soc. 2013;15:1–7.


    Google Scholar
     

  • Neumeyer R, Baur H, Guex GD, Praz C. A new species of the paper wasp genus Polistes (Hymenoptera, Vespidae, Polistinae) in Europe revealed by morphometrics and molecular analyses. Zookeys. 2014. doi:https://doi.org/10.3897/zookeys.400.6611.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loope KJ, Carpenter JM. Polistes major major and Polistes apachus (Hymenoptera: Vespidae) in Georgia, USA. Florida Entomologist. 2016; doi:https://doi.org/10.1653/024.099.0332.

  • Selis M. Revision of the genus Polistes Latreille (Hymenoptera: Vespidae: Polistinae) in the Philippine Islands. Zootaxa. 2018. doi:https://doi.org/10.11646/zootaxa.4531.4.3.

    Article 
    PubMed 

    Google Scholar
     

  • Selis M. Description of the first endemic Polistes Latreille, 1802 from Sulawesi (Hymenoptera: Vespidae: Polistinae). Zootaxa. 2018. doi:https://doi.org/10.11646/zootaxa.4508.3.7.

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen LTP. Contribution to the taxonomy of the paper wasp genus Polistes (Polistella) (Hymenoptera: Vespidae: Polistinae) from Vietnam, with description of a new species. Zootaxa. 2020. doi:https://doi.org/10.11646/zootaxa.4759.2.7.

    Article 
    PubMed 

    Google Scholar
     

  • Jin SG, Zhu WY. Discussion the newest global plate motion model ITRF2000VEL. Geophys. 2002. doi:https://doi.org/10.1080/12265080208422884.

    Article 

    Google Scholar
     

  • Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999. doi:https://doi.org/10.1093/nar/27.8.1767.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua YQ, Ding YR, Yan ZT, Si FL, Luo QC, Chen B. The complete mitochondrial genome of Anopheles minimus (Diptera: Culicidae) and the phylogenetics of known Anopheles mitogenomes. Insect Sci. 2016. doi:https://doi.org/10.1111/1744-7917.12326.

    Article 
    PubMed 

    Google Scholar
     

  • Banka S, Sanna M, Mayera C, Meusemanna K, Donatha A, Podsiadlowskic L, Kozlovd A, Petersena M, Krogmanne L, Meierf R, Rosag P, Schmitth T, Wurdackb M, Liu SL, Zhou X, Misofa B, Petersn RS, Niehuisa O. Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Mol Phylogenet Evol. 2017;116:213–26. https://doi.org/10.1016/j.ympev.2017.08.020.

    CAS 
    Article 

    Google Scholar
     

  • Pickett KM, Wenzel JW. Phylogenetic analysis of the New World Polistes (Hymenoptera: Vespidae: Polistinae) using morphology and molecules. J Kansas Entomol Soc. 2004. doi:https://doi.org/10.1046/j.1365-3113.2000.00102.x.

    Article 

    Google Scholar
     

  • Kim JS, Jeong JS, Su YJ. Complete mitochondrial genome of the black-tailed hornet, Vespa ducalis (Hymenoptera: Vespidae): genomic comparisons in Vespoidea: complete mitochondrial genome of Vespa ducalis. Entomol Res. 2017. doi:https://doi.org/10.1111/1748-5967.12218.

    Article 

    Google Scholar
     

  • Piekarski PK, Carpenter JM, Lemmon AR, Lemmon EM, Sharanowski BJ. Phylogenomic evidence overturns current conceptions social evolution in wasps (Vespidae). Mol Biol Evol. 2018. doi:https://doi.org/10.1093/molbev/msy124.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang P, Carpenter JM, Chen B, Li TJ. The first divergence time estimation of the subfamily Stenogastrinae (Hymenoptera: Vespidae) based on mitochondrial phylogenomics. Int J Biol Macromol. 2019; doi: https://doi.org/10.1016/j.ijbiomac.2019.06.239.

    Article 
    PubMed 

    Google Scholar
     

  • Perrard A, Carpenter JM. Early lineages of Vespidae (Hymenoptera) in Cretaceous amber. Syst Entomol. 2017;42(2):379–86. doi:https://doi.org/10.1111/syen.12222.

    Article 

    Google Scholar
     

  • Peters RS, Krogmann L, Mayer C, Ralph S. Donath A, Gunkel S, Meusemann K, Kozlov A, Podsiadlowski L, Petersen M, Lanfear R, Diez PA, Heraty J, Kjer KM, Klopfstein S, Meier R, Polidori C, Schmitt T, Liu SL, Zhou X, Wappler T, Rust J, Misof B, Niehuis O. Evolutionary history of the hymenoptera. Curr Biol. 2017;27:1–6. doi:https://doi.org/10.1016/j.cub.2017.01.027.

    CAS 
    Article 

    Google Scholar
     

  • Öztürk PN, Çiplak B. Phylomitogenomics of Phaneropteridae (Orthoptera): Combined data indicate a poorly conserved mitogenome. Int J Biol Macromol. 2019. doi:https://doi.org/10.1016/jijbiomac.2019.4.011.

    Article 
    PubMed 

    Google Scholar
     

  • Dowton M, Cameron SL, Dowavic JI, Austin AD, Whiting MF. Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Mol Biol Evol. 2009. doi:https://doi.org/10.1093/molbev/msp072.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang JF, Miao JP, Hu SJ, Sun Q, Ding HW, Ji ZC, Guo P, Yan SB, Wang CR, Kan XZ, Nie LW. Quantifcation and evolution of mitochondrial genome rearrangement in Amphibians. BMC Ecol Evol. 2021;21:19. doi:https://doi.org/10.1186/s12862-021-01755-3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Oliveira FB, Molina EC, Marroig G. Paleogeography of the South Atlantic: a route for primates and rodents into the New World? Garber, P.A. et al, editors, South American Primates, developments in primatology: progress and prospects. 2009; doi:https://doi.org/10.1007/978-0-387-78705-33.

  • Sclater JG. The paleobathymetry of the Atlantic Ocean from the Jurassic to the present. J Geol. 1977. doi:https://doi.org/10.2307/30059117.

    Article 

    Google Scholar
     

  • Ford D, Golonka J. Phanerozoic paleogeography, paleoenvironment and lithofacies maps of the circum-Atlantic margins. Mar Pet Geol. 2003. doi:https://doi.org/10.1016/S0264-8172(03)00041-2.

    Article 

    Google Scholar
     

  • Wright NM, Seton M, Williams SE. The Late Cretaceous to recent tectonic history of the Pacific Ocean basin. Earth-Sci Rev. 2016. doi:https://doi.org/10.1016/jearscirev.2015.11.015.

    Article 

    Google Scholar
     

  • Seton M, Flament N, Whittaker J. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60–50 million years ago. Geophys Res Lett. 2015;42(6):1732–40.

    Article 

    Google Scholar
     

  • Gasperini L, Bernoulli D, Bonatti E, Borsetti AM, Ligi M, Sartori NAR, von Salis K. Lower Cretaceous to Eocene sedimentary transverse ridge at the Romanche Fracture Zone and the opening of the equatorial Atlantic. Mar Pet Geol. 2001. doi:https://doi.org/10.1016/S0025-3227(01)00146-3.

    Article 

    Google Scholar
     

  • Heydolph K, Murphy DT, Geldmacher J. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): insights from Nd, Pb and Hf isotopes. Lithos. 2014;200(201):49–63.

    Article 

    Google Scholar
     

  • Hilde TWC, Uyeda S, Kroenke L. Evolution of the western Pacific and its margin. Tectonophysics. 1977. doi:https://doi.org/10.1016/0040-1951(77)90205-0.

    Article 

    Google Scholar
     

  • Rowe DL, Dunn KA, Adkins RM, Honeycutt RL. Molecular clocks keep dispersal hypotheses afloat: evidence for trans-Atlantic rafting by rodents. J Biogeogr. 2010;37:305–24.

    Article 

    Google Scholar
     

  • Schrago CG, Russo CAM. Timing the origin of New World monkeys. Mol Biology Evol. 2003;20:1620–5. doi:https://doi.org/10.1093/molbev/msg172.

    CAS 
    Article 

    Google Scholar
     

  • Mayr G, Alvarenga H, Mourer-Chauviré C. Out of Africa: fossils shed light on the origin of the hoatzin, an iconic Neotropical bird. Naturwissenschaften. 2011;98:961–6.

    CAS 
    Article 

    Google Scholar
     

  • Renner S. Plant dispersal across the tropical Atlantic by wind and sea currents. Int J Plant Sci. 2004;165(4 Suppl.):24–33.


    Google Scholar
     

  • Bailey W. Principles of paleogeography. Science. 1910;31(790):241–60.

    Article 

    Google Scholar
     

  • Saito F, Kojima J. Taxonomy and biogeography of Australian species of the Ropalidia stigma group and R. variegata group (Hymenoptera: Vespidae). Entomol Sci. 2005. doi:https://doi.org/10.1111/j.1479-8298.2005.00111x.

    Article 

    Google Scholar
     

  • Hill JK, Griffiths HM, Thomas CD. Climate change and evolutionary adaptations at species range margins. Ann Rev Entomol. 2011. doi:https://doi.org/10.1146/annurev-ento-120709-144746.

    Article 

    Google Scholar
     

  • Louis M, Skovrind M, Castruita JAS, Garilao C, Kaschner K, Gopalakrishnan K, Haile JS. Lydersen C, Kovacs KM, Garde E, Heide-Jørgensen MP, Postma L, Ferguson SH, Willerslev K, Lorenzen ED. Influence of past climate change on phylogeography and demographic history of narwhals, Monodon monoceros. Royal Soc. 2020. doi:https://doi.org/10.1098/rspb.2019.2964.

    Article 

    Google Scholar
     

  • Cui ZJ, Chen YX, Zhang W. Research history, glacial chronology and origins of Quaternary glaciations in China. Quat Sci. 2011;31(5):749–64.


    Google Scholar
     

  • Shi YF. Characteristics of late Quaternary monsoon glaciation on the Tibetan Plateau and in East Asia. Quatern Int. 2002. doi:https://doi.org/10.1016/S1040-6182(02)00053-8.

    Article 

    Google Scholar
     

  • Yang JQ, Zhang W, Cui ZJ. Late Pleistocene glaciation of the Diancang and Gongwang Mountains, southeast margin of the Tibetan Plateau. Quatern Int. 2006. doi:https://doi.org/10.1016/jquaint.2006.02.003.

    Article 

    Google Scholar
     

  • Miryam BM, Avner A. Late Quaternary Paleoclimate in the Eastern. Mediterranean region from stable Isotope analysis of Speleothems at Soreq Cave, Israel. Quatern Res. 1997;47:155–68.

    Article 

    Google Scholar
     

  • Ye XZ, Zhao GH, Zhang MZ, Cui XY, Fan HH, Liu B. Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last Interglacial Period. Forests. 2020. doi:https://doi.org/10.3390/f11040434.

    Article 

    Google Scholar
     

  • Green JP, Rose C, Field J. The role of climatic factors in the expression of an intrasexual signal in the paper wasp Polistes dominulus. Ethology. 2012. doi:https://doi.org/10.1111/j.1439-0310.2012.02067x.

    Article 

    Google Scholar
     

  • Elisei T, Guimaraes DL, Ribeiro C, Melo AC, Grazinoli DJ, Lopes JFS, Prezoto F. Influence of environmental factors on the foraging activity of the paper wasp Polistes simillimus (Hymenoptera, Vespidae). Sociobiology. 2008. doi:https://doi.org/10.1021/ba-1968-0076.ch037.

    Article 

    Google Scholar
     

  • José VAF, Danielle ST, Ricardo JDS, Alexandre S, Mônica JBP, Dionei JDS. Effect of habitat amount and complexity on social wasps (Vespidae: Polistinae): implications for biological control. J Insect Conserv. 2020. doi:https://doi.org/10.1007/s10841-020-00221-7.

    Article 

    Google Scholar
     

  • Jun SY, Kim JH, Choi J, Kim SJ, Kim BM, An SI. The internal origin of the west-east asymmetry of Antarctic climate change. Sci Adv. 2020. doi:https://doi.org/10.1126/sciadvaaz1490.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hof AR, Svahlin A. The potential effect of climate change on the geographical distribution of insect pest species in the Swedish boreal forest. Scand J For Res. 2015. doi:https://doi.org/10.1080/02827581.2015.1079644.

    Article 

    Google Scholar
     

  • Degani G. The habitats, burrowing behavior, physiology adaptation and life cycle of Spadefoot Toads (Pelobates syriacus Boettger, 1869) at the southern limit of its distribution in Israel. Open J Anim Sci. 2015. doi:https://doi.org/10.4236/ojas.2015.53029.

    Article 

    Google Scholar
     

  • Hallman GJ, Denlinger DL. Temperature sensitivity in insects and application in integrated pest management. Oxford: Westview Press; 1998. pp. 7–55. (doi:https://doi.org/10.1201/9780429308581).

    Book 

    Google Scholar
     

  • Ibanez T, Keppel G, Menkes C, Gillespie TW, Lengaigne M, Mangeas M, Rivas-Torres G, Birnbaum P. Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. J Ecol. 2019. doi:https://doi.org/10.1111/1365-2745.13039.

    Article 

    Google Scholar
     

  • Ojo JS, Owolawi PA. Characterization of rain heights due to 0°C isotherm in tropical and subtropical climates: implication on rain-induced attenuation prediction. Springer Vienna. 2019. doi:https://doi.org/10.1007/s00704-018-2382-z.

    Article 

    Google Scholar
     

  • Zhan F, Yu DY, Luo YZ, Ho SYW, Wang BX, Zhu CD. Cryptic diversity, diversification and vicariance in two species complexes of Tomocerus (Collembola, Tomoceridae) from China. Zoolog Scr. 2013. doi:https://doi.org/10.1111/zsc.12056.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)