• Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    PubMed 
    Article 

    Google Scholar
     

  • Bast RC, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest. 1981;68(5):1331–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hellström I, Raycraft J, Hayden-Ledbetter M, Ledbetter JA, Schummer M, McIntosh M, et al. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 2003;63(13):3695–700.

    PubMed 

    Google Scholar
     

  • Chudecka-Głaz AM. ROMA, an algorithm for ovarian cancer. Clin Chim Acta. 2015;440:143–51.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol. 1990;97(10):922–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vincent HA, Deutscher MP. Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem. 2006;281(40):29769–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer. 2020;6(4):319–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang X, Mei J, Wang H, Gu D, Ding J, Liu C. The emerging roles of circular RNAs in ovarian cancer. Cancer Cell Int. 2020;20:265.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi Y, He R, Yang Y, He Y, Shao K, Zhan L, et al. Circular RNAs: Novel biomarkers for cervical, ovarian and endometrial cancer (Review). Oncol Rep. 2020;44(5):1787–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang SJ, Chen X, Li CP, Li XM, Liu C, Liu BH, et al. Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Diabetes Retinopathy. Invest Ophthalmol Vis Sci. 2017;58(14):6500–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bahn JH, Zhang Q, Li F, Chan T-M, Lin X, Kim Y, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61(1):221–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, et al. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer. 2021;20(1):13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei G, Zhu J, Hu H-B, Liu J-Q. Circular RNAs: Promising biomarkers for cancer diagnosis and prognosis. Gene. 2021;771:145365.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sheng R, Li X, Wang Z, Wang X. Circular RNAs and their emerging roles as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Lett. 2020;473:139–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin C, Xu X, Yang Q, Liang L, Qiao S. Circular RNA ITCH suppresses proliferation, invasion, and glycolysis of ovarian cancer cells by up-regulating CDH1 via sponging miR-106a. Cancer Cell Int. 2020;20:336.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang N, Yang Z, Jin Y, Cheng S, Yang J, Wang Y. Low Expression of Circular RNA hsa_circ_0078607 Predicts Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancer Manag Res. 2021;13:2877–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang X, Liu S, Ding Y, Guo C, Guo J, Hua K, et al. Serum Circular FoxO3a Serves as a Novel Prognostic Biomarker in Squamous Cervical Cancer. Cancer Manag Res. 2020;12:2531–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yin WB, Yan MG, Fang X, Guo JJ, Xiong W, Zhang RP. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 2018;487:363–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Teng F, Xu J, Zhang M, Liu S, Gu Y, Zhang M, et al. Comprehensive circular RNA expression profiles and the tumor-suppressive function of circHIPK3 in ovarian cancer. Int J Biochem Cell B. 2019;112:8–17.

    CAS 
    Article 

    Google Scholar
     

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome. A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34–42.

    PubMed 
    Article 

    Google Scholar
     

  • Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16(7):899–905.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vilming Elgaaen B, Olstad OK, Haug KBF, Brusletto B, Sandvik L, Staff AC, et al. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker. BMC Cancer. 2014;14:80.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lewis BP, Shih Ih, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-D31.

    Article 
    CAS 

    Google Scholar
     

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB. Identifying and Characterizing circRNA-Protein Interaction. Theranostics. 2017;7(17):4183–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi Y, Jia X, Xu J. The new function of circRNA: translation. Clin Transl Oncol. 2020;22(12):2162–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell. 2017;66(1):22–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lei B, Zhou J, Xuan X, Tian Z, Zhang M, Gao W, et al. Circular RNA expression profiles of peripheral blood mononuclear cells in hepatocellular carcinoma patients by sequence analysis. Cancer Med. 2019;8(4):1423–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reimers N, Pantel K. Liquid biopsy: novel technologies and clinical applications. Clin Chem Lab Med. 2019;57(3):312–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dragomir M, Calin GA. Circular RNAs in Cancer – Lessons Learned From microRNAs. Front Oncol. 2018;8:179.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li J, Song Y, Wang J, Huang J. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer detection. Am J Transl Res. 2020;12(11):7395–403.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Zhu Y, Zhang W, Lang J, Ning L. Utility Of Plasma circBNC2 As A Diagnostic Biomarker In Epithelial Ovarian Cancer. Onco Targets Ther. 2019;12:9715–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang W, Wang J, Zhang X, Liu G. Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer. OncoTargets Ther. 2019;12:7451–7.

    CAS 
    Article 

    Google Scholar
     

  • Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wolf D, Fiegl H, Zeimet AG, Wieser V, Marth C, Sprung S, et al. High RIG-I expression in ovarian cancer associates with an immune-escape signature and poor clinical outcome. Int J Cancer. 2020;146(7):2007–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patel PS, Abraham KJ, Guturi KKN, Halaby MJ, Khan Z, Palomero L. dt al. RNF168 regulatesR-loop resolution and genomic stability in BRCA1/2-deficient tumors. J Clin Invest. 2021;131(3):e140105.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol. 2019;234(10):17064–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delangle R, De Foucher T, Larsen AK, Sabbah M, Azaïs H, Bendifallah S, et al. The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis. Cancers. 2019;11(6):832.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giannopoulou L, Zavridou M, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res. 2019;205:77–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen LL. The biogenesis and emerging roles of circular RNAs. Nat reviews Mol Cell Biol. 2016;17(4):205–11.

    CAS 
    Article 

    Google Scholar
     

  • Verduci L, Strano S, Yarden Y, Blandino G. The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment. Mol Oncol. 2019;13(4):669–80.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang F, Xu Y, Ye W, Jiang J, Wu C. Circular. RNA S-7 promotes ovarian cancer EMT via sponging miR-641 to up-regulate ZEB1 and MDM2. Biosci Rep. 2020;40(7):BSR20200825.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li RC, Ke S, Meng FK, Lu J, Zou XJ, He ZG, et al. CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis. 2018;9(8):838.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, et al. Circular RNA ciRS-7-A Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. Clin Cancer Res. 2017;23(14):3918–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73(18):5609–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Ge YZ, Xu L, Jia R. Circular. RNA ITCH: A novel tumor suppressor in multiple cancers. Life Sci. 2020;254:117176.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luo L, Gao Y, Sun X. Circ-ITCH correlates with small tumor size, decreased FIGO stage and prolonged overall survival, and it inhibits cells proliferation while promotes cells apoptosis in epithelial ovarian cancer. Cancer Biomark. 2018;23(4):505–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Zeng Qa, Qiu J, Pang T, Ye F, Huang L, et al. MiR-183-5p Promotes Proliferation, Metastasis and Angiogenesis in Breast Cancer Cells through Negatively Regulating Four and a Half LIM Protein 1. J Breast Cancer. 2020;23(4):355–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang L, Zhu MJ, Ren AM, Wu HF, Han WM, Tan RY, et al. A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer. PLoS ONE. 2014;9(5):e96472.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lu F, Li C, Sun Y, Jia T, Li N, Li H. Upregulation of miR-1825 inhibits the progression of glioblastoma by suppressing CDK14 though Wnt/β-catenin signaling pathway. World J Surg Oncol. 2020;18(1):147.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren Z, He M, Shen T, Wang K, Meng Q, Chen X, et al. MiR-421 promotes the development of osteosarcoma by regulating MCPIP1 expression. Cancer Biol Ther. 2020;21(3):231–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu X, Li J, Yu Z, Li J, Sun R, Kan Q. miR-935 Promotes Liver Cancer Cell Proliferation and Migration by Targeting SOX7. Oncol Res. 2017;25(3):427–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xue WX, Zhang MY, Rui L, Liu X, Yin YH, Qu YQ. Serum miR-1228-3p and miR-181a-5p as Noninvasive Biomarkers for Non-Small Cell Lung Cancer Diagnosis and Prognosis. Biomed Res Int. 2020;2020:9601876.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du J, Xu R. RORα, a potential tumor suppressor and therapeutic target of breast cancer. Int J Mol Sci. 2012;13(12):15755–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee JM, Kim IS, Kim H, Lee JS, Kim K, Yim HY, et al. RORalpha attenuates Wnt/beta-catenin signaling by PKCalpha-dependent phosphorylation in colon cancer. Mol Cell. 2010;37(2):183–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim H, Lee JM, Lee G, Bhin J, Oh SK, Kim K, et al. DNA damage-induced RORα is crucial for p53 stabilization and increased apoptosis. Mol Cell. 2011;44(5):797–810.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar S, Sharghi-Namini S, Rao N, Ge R. ADAMTS5 functions as an anti-angiogenic and anti-tumorigenic protein independent of its proteoglycanase activity. Am J Pathol. 2012;181(3):1056–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang W, Shen T, Dong B, Creighton CJ, Meng Y, Zhou W, et al. MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling. J Clin Invest. 2019;129(3):1015–29.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shen T, Wang W, Zhou W, Coleman I, Cai Q, Dong B, et al. MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. J Clin Invest. 2021;131(4):e135465.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest. 2016;126(4):1538–54.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sasca D, Szybinski J, Schüler A, Shah V, Heidelberger J, Haehnel PS, et al. NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML. Blood. 2019;133(21):2305–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wen J, Liu J, Zhang P, Jiang H, Xin L, Wan L, et al. RNA-seq reveals the circular RNA and miRNA expression profile of peripheral blood mononuclear cells in patients with rheumatoid arthritis. Biosci Rep. 2020;40(4):BSR20193160.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li J, Liu D, Wu K, Chen Q, Lei J. Circ_0003972 Promotes the Proliferation and Inflammation of Fibroblast-like Synovial Cells in Rheumatoid Arthritis through Regulation of the miR-654-5p/FZD4 Axis. Immunol Invest. 2021. https://doi.org/10.1080/08820139.2021.1958837.

  • Ma J, Meng Q, Zhan J, Wang H, Fan W, Wang Y, et al. Paeoniflorin Suppresses Rheumatoid Arthritis Development via Modulating the Circ-FAM120A/miR-671-5p/MDM4 Axis. Inflammation. 2021;44(6):2309–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)