• Penney J, Ralvenius WT, Tsai L-H. Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol Psychiatry. 2020;25:148–67.

    PubMed 
    Article 

    Google Scholar
     

  • Erkkinen MG, Kim M-O, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10: a033118.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dumurgier J, Sabia S. Epidemiology of Alzheimer’s disease: latest trends. Rev Prat. 2020;70:149–51.

    PubMed 

    Google Scholar
     

  • Mielke MM. Sex and gender differences in Alzheimer’s disease dementia. Psychiatr Times. 2018;35:14–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eratne D, Loi SM, Farrand S, Kelso W, Velakoulis D, Looi JC. Alzheimer’s disease: clinical update on epidemiology, pathophysiology and diagnosis. Aust Psychiatry Bull R Aust N Zeal Coll Psychiatr. 2018;26:347–57.


    Google Scholar
     

  • Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cummings JL, Tong G, Ballard C. Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J Alzheimers Dis. 2019;67:779–94.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hogan DB. Long-term efficacy and toxicity of cholinesterase inhibitors in the treatment of Alzheimer disease. Can J Psychiatry. 2014;59:618–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu H, Garcia-Ptacek S, Jönsson L, Anders W, Nordström P, Eriksdotter M. Long term effects of cholinesterase inhibitors on cognitive decline and mortality. Neurology. 2021. https://doi.org/10.1212/WNL.0000000000011832.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Idkowiak-Baldys J, Santhanam U, Buchanan SM, Pfaff KL, Rubin LL, Lyga J. Growth differentiation factor 11 (GDF11) has pronounced effects on skin biology. PLoS ONE. 2019;14:e0218035–e0218035.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Poggioli T, Vujic A, Yang P, Macias-Trevino C, Uygur A, Loffredo FS, et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ Res. 2016;118:29–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hudobenko J, Ganesh BP, Jiang J, Mohan EC, Lee S, Sheth S, et al. Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice. Aging (Albany NY). 2020;12:8049–66.

    CAS 
    Article 

    Google Scholar
     

  • Zhang W, Guo Y, Li B, Zhang Q, Liu JH, Gu GJ, et al. GDF11 Rejuvenates cerebrovascular structure and function in an animal model of Alzheimer’s disease. J Alzheimer’s Dis. 2018;62:807–19.

    CAS 
    Article 

    Google Scholar
     

  • Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153:828–39.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344:649–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Li Q, Liu D, Huang Q, Cai G, Cui S, et al. GDF11 improves tubular regeneration after acute kidney injury in elderly mice. Sci Rep. 2016;6:34624.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Shao J, Wang Z, Yang T, Liu S, Liu Y, et al. Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARgamma. Gene. 2015;557:209–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rochette L, Mazini L, Meloux A, Zeller M, Cottin Y, Vergely C, et al. Anti-aging effects of GDF11 on skin. Int J Mol Sci. 2020;21:2598.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ozek C, Krolewski RC, Buchanan SM, Rubin LL. Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. Sci Rep. 2018;8:17293.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14:101–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mesulam M-M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol. 2013. https://doi.org/10.1002/cne.23415.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majdi A, Sadigh-Eteghad S, Rahigh Aghsan S, Farajdokht F, Vatandoust SM, Namvaran A, et al. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev Neurosci. 2020;31:391–413.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramos-Rodriguez JJ, Pacheco-Herrero M, Thyssen D, Murillo-Carretero MI, Berrocoso E, Spires-Jones TL, et al. Rapid β-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J Neuropathol Exp Neurol. 2013;72:272–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Galvão F, Grokoski KC, da Silva BB, Lamers ML, Siqueira IR. The amyloid precursor protein (APP) processing as a biological link between Alzheimer’s disease and cancer. Ageing Res Rev. 2019;49:83–91.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Coronel R, Bernabeu-Zornoza A, Palmer C, Muñiz-Moreno M, Zambrano A, Cano E, et al. Role of amyloid precursor protein (APP) and its derivatives in the biology and cell fate specification of neural stem cells. Mol Neurobiol. 2018;55:7107–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Menon P. The amyloid-β precursor protein (APP) and its adaptor protein Fe65: two key players in Alzheimer’s disease. Department of Biochemistry and Biophysics: Stockholm University; 2020.


    Google Scholar
     

  • Sun X, Chen W-D, Wang Y-D. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol. 2015;6:221.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominici R, Finazzi D, Polito L, Oldoni E, Bugari G, Montanelli A, et al. Comparison of β2-microglobulin serum level between Alzheimer’s patients, cognitive healthy and mild cognitive impaired individuals. Biomarkers. 2018;23:603–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lucey BP, Hicks TJ, McLeland JS, Toedebusch CD, Boyd J, Elbert DL, et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann Neurol. 2018;83:197–204.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alonso AD, Beharry C, Corbo CP, Cohen LS. Molecular mechanism of prion-like tau-induced neurodegeneration. Alzheimer’s Dement. 2016;12:1090–7.

    Article 

    Google Scholar
     

  • Wu X-L, Piña-Crespo J, Zhang Y-W, Chen X-C, Xu H-X. Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s disease. Chin Med J (Engl). 2017;130:2978–90.

    CAS 
    Article 

    Google Scholar
     

  • Fernandez-Valenzuela JJ, Sanchez-Varo R, Muñoz-Castro C, De Castro V, Sanchez-Mejias E, Navarro V, et al. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer’s disease model. Sci Rep. 2020;10:14776.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alonso AD, Cohen LS, Corbo C, Morozova V, ElIdrissi A, Phillips G, et al. Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci. 2018;12:338.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes Vasc Dis Res. 2018;15:3–13.

    CAS 
    Article 

    Google Scholar
     

  • Jamaiyar A, Wan W, Janota DM, Enrick MK, Chilian WM, Yin L. The versatility and paradox of GDF 11. Pharmacol Ther. 2017;175:28–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walker RG, Czepnik M, Goebel EJ, McCoy JC, Vujic A, Cho M, et al. Structural basis for potency differences between GDF8 and GDF11. BMC Biol. 2017;15:19.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hata A, Chen Y-G. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8: a022061.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gerardo-Ramírez M, Lazzarini-Lechuga R, Hernández-Rizo S, Jiménez-Salazar JE, Simoni-Nieves A, García-Ruiz C, et al. GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion. Biochim Biophys Acta Mol Basis Dis. 2019;1865:1540–54.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bajikar SS, Wang C-C, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-suppressor inactivation of GDF11 occurs by precursor sequestration in triple-negative breast cancer. Dev Cell. 2017;43:418-435.e13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang Z, Dou M, Liu F, Jiang P, Ye S, Ma L, et al. GDF11 induces differentiation and apoptosis and inhibits migration of C172 neural stem cells via modulating MAPK signaling pathway. PeerJ. 2018;6: e5524.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hindi SM, Sato S, Xiong G, Bohnert KR, Gibb AA, Gallot YS, et al. TAK1 regulates skeletal muscle mass and mitochondrial function. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.98441.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412:346–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen W, Wang H, Feng J, Chen L. Overexpression of circRNA circUCK2 attenuates cell apoptosis in cerebral ischemia-reperfusion injury via miR-125b-5p/GDF11 signaling. Mol Therapy Nucleic Acids. 2020;22:673–83.

    CAS 
    Article 

    Google Scholar
     

  • Liu X, Deng X, Ding R, Cheng X, Jia J. Chondrocyte suppression is mediated by miR-129-5p via GDF11/SMAD3 signaling in developmental dysplasia of the hip. J Orthop Res Off Publ Orthop Res Soc. 2020;38:2559–72.

    CAS 
    Article 

    Google Scholar
     

  • Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20:659–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rochette L, Vergely C. ‘Pro-youthful’ factors in the ‘labyrinth’ of cardiac rejuvenation. Exp Gerontol. 2016;83:1–5.

    PubMed 
    Article 

    Google Scholar
     

  • Hayashi Y, Mikawa S, Masumoto K, Katou F, Sato K. GDF11 expression in the adult rat central nervous system. J Chem Neuroanat. 2018;89:21–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi Y, Liu J-P. Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord. J Neurosci. 2011;31:883–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koppensteiner P, Trinchese F, Fà M, Puzzo D, Gulisano W, Yan S, et al. Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer’s disease. Sci Rep. 2016;6:32553.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid Med Cell Longev. 2019;2019:2105607.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rochette L, Malka G. Neuroprotective potential of GDF11: myth or reality? Int J Mol Sci. 2019;20:3563.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang M, Jadavji NM, Yoo H-S, Smith PD. Recombinant growth differentiation factor 11 influences short-term memory and enhances Sox2 expression in middle-aged mice. Behav Brain Res. 2018;341:45–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Finkenzeller G, Stark GB, Strassburg S. Growth differentiation factor 11 supports migration and sprouting of endothelial progenitor cells. J Surg Res. 2015;198:50–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu L, Bai X, Cao Y, Luo H, Yang X, Kang L, et al. Growth differentiation factor 11 promotes neurovascular recovery after stroke in mice. Front Cell Neurosci. 2018;12:205.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Katsimpardi L, Rubin LL. Young systemic factors as a medicine for age-related neurodegenerative diseases. Neurogenes (Austin, Tex). 2015;2:e1004971–e1004971.


    Google Scholar
     

  • Ma J, Zhang L, Niu T, Ai C, Jia G, Jin X, et al. Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion. Brain Res Bull. 2018;139:38–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 2014;6:305–11.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giannoni P, Arango-Lievano M, Das NI, Rousset M-C, Baranger K, Rivera S, et al. Cerebrovascular pathology during the progression of experimental Alzheimer’s disease. Neurobiol Dis. 2016;88:107–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morin-Brureau M, Lebrun A, Rousset M-C, Fagni L, Bockaert J, de Bock F, et al. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011;31:10677–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)