• International Renewable Energy Agency (IRENA) (2019) Global energy transformation: a roadmap to 2050 (2019 edition). International Renewable Energy Agency, Abu Dhabi

  • European Commission (2019) MITTEILUNG DER KOMMISSION AN DAS EUROPÄISCHE PARLAMENT, DEN RAT, DEN EUROPÄISCHEN WIRTSCHAFTS-UND SOZIALAUSSCHUSS UND DEN AUSSCHUSS DER REGIONEN—Der europäische Grüne Deal. Brüssel

  • Agora Energiewende (2015) Understanding the Energiewende. FAQ on the ongoing transition of the German power system. publ. online. https://www.agora-energiewende.de/fileadmin/Projekte/2015/Understanding_the_EW/Agora_Understanding_the_Energiewende.pdf

  • Santoyo-Castelazo E, Azapagic A (2014) Sustainability assessment of energy systems: integrating environmental, economic and social aspects. J Clean Prod 80:119–138

    Article 

    Google Scholar
     

  • Hadian S, Madani K (2015) A system of systems approach to energy sustainability assessment: are all renewables really green? Ecol Indic 52:194–206

    Article 

    Google Scholar
     

  • Wulf C, Werker J, Ball C, Zapp P, Kuckshinrichs W (2019) Review of sustainability assessment approaches based on life cycles. Sustainability 11(20):5717

    Article 

    Google Scholar
     

  • Ribeiro F, Ferreira P, Araújo M, Braga AC (2018) Modelling perception and attitudes towards renewable energy technologies. Renew Energy 122:688–697

    Article 

    Google Scholar
     

  • Andes L (2019) Methodensammlung zur Nachhaltigkeitsbewertung—Grundlagen, Indikatoren, Hilfsmittel. Karlsruhe Institute of Technology, Karlsruhe


    Google Scholar
     

  • Fauzi RT, Lavoie P, Sorelli L, Heidari MD, Amor B (2019) Exploring the current challenges and opportunities of life cycle sustainability assessment. Sustainability 11(3):636

    Article 

    Google Scholar
     

  • Costa D, Quinteiro P, Dias A (2019) A systematic review of life cycle sustainability assessment: current state, methodological challenges, and implementation issues. Sci Total Environ 686:774–787

    Article 

    Google Scholar
     

  • Collotta M, Champagne P, Tomasoni G, Alberti M, Busi L, Mabee W (2019) Critical indicators of sustainability for biofuels: an analysis through a life cycle sustainabilty assessment perspective. Renew Sustain Energy Rev 115:109358

    Article 

    Google Scholar
     

  • Hedelin B (2019) Complexity is no excuse. Sustain Sci 14(3):733–749

    Article 

    Google Scholar
     

  • Hák T, Janoušková S, Moldan B (2016) Sustainable development goals: a need for relevant indicators. Ecol Indic 60:565–573

    Article 

    Google Scholar
     

  • Helmholtz Association (2019) Energy system 2050. https://www.helmholtz.de/en/research/research-fields/energy/energy-system-2050/

  • International Energy Agency (IEA) (2020) Germany 2020 Energy policy review. publ. online. https://www.bmwi.de/Redaktion/DE/Downloads/G/germany-2020-energy-policy-review.pdf?__blob=publicationFile&v=4

  • European Parliament (2018) Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the European Union L 328/205

  • Federal Ministry for Economic Affairs and Energy (2019) Integrated National Energy
    and Climate Plan. publ. online. https://ec.europa.eu/energy/sites/ener/files/de_final_necp_main_de.pdf

  • Tremmel J (2004) “Nachhaltigkeit”–definiert nach einem kriteriengebundenen Verfahren. Gaia 13(1):26–34

    MathSciNet 
    Article 

    Google Scholar
     

  • Kloepffer W (2008) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13(2):89

    Article 

    Google Scholar
     

  • United Nations Economic and Social Council (2020) Report of the Inter-agency and Expert Group on Sustainable Development Goal Indicators. United Nations E/CN.3/2020/2

  • United Nations (UN) (2015) The millennium development goals report. United Nations, New York


    Google Scholar
     

  • Wulf C, Werker J, Zapp P, Schreiber A, Schlör H, Kuckshinrichs W (2018) Sustainable development goals as a guideline for indicator selection in life cycle sustainability assessment. Proc CIRP 69:59–65

    Article 

    Google Scholar
     

  • Büyüközkan G, Karabulut Y, Mukul E (2018) A novel renewable energy selection model for United Nations’ sustainable development goals. Energy 165:290–302

    Article 

    Google Scholar
     

  • AlQattan N, Acheampong M, Jaward FM, Ertem FC, Vijayakumar N, Bello T (2018) Reviewing the potential of Waste-to-Energy (WTE) technologies for Sustainable Development Goal (SDG) numbers seven and eleven. Renew Energy Focus 27:97–110

    Article 

    Google Scholar
     

  • Kopfmüller J, Brandl V, Jörissen J, Paetau M, Banse G, Coenen R, Grunwald A (2001) Nachhaltige Entwicklung integrativ betrachtet: Konstitutive Elemente, Regeln Indikatoren. Edition Sigma, Berlin


    Google Scholar
     

  • Kopfmüller J (2006) Das integrative Konzept nachhaltiger Entwicklung: Motivation, Architektur, Perspektiven. In: Kopfmüller J (ed) Ein Konzept auf dem Prüfstand. Nomos Verlagsgesellschaft mbH & Co. KG, Baden-Baden

    Chapter 

    Google Scholar
     

  • United Nations (1987) Our common future. Report of the World Commission on Environment and Development. Transmitted to the General Assembly as an Annex to document A/42/427 – Development and International Co-operation: Environment

  • United Nations (1992) Rio declaration on environment and development. REPORT OF THE UNITED NATIONS CONFERENCE ON
    ENVIRONMENT AND DEVELOPMENT, Rio de Janeiro, 3-14 June 1992

  • United Nations (1992) Agenda 21. Action Plan of the United Nations with regard to sustainable development. United Nations Conference on Environment & Development,
    Rio de Janerio, Brazil, 3 to 14 June 1992

  • Rösch C, Bräutigam K-R, Kopfmüller J, Stelzer V, Lichtner P (2017) Indicator system for the sustainability assessment of the German energy system and its transition. Energy Sustain Soc 7(1)

    Article 

    Google Scholar
     

  • Kopfmüller J, Lehn H, Nuissl H, Krellenberg K, Heinrichs D (2010) Sustainable development of megacities: an integrative research approach for the case of Santiago Metropolitan Region. Erde 140(4):417–448


    Google Scholar
     

  • Fuss M, Barros RTV, Poganietz W-R (2018) Designing a framework for municipal solid waste management towards sustainability in emerging economy countries-an application to a case study in Belo Horizonte (Brazil). J Clean Prod 178:655–664

    Article 

    Google Scholar
     

  • Nayono S, Lehmann A, Kopfmüller J, Lehn H (2016) Improving sustainability by technology assessment and systems analysis: the case of IWRM Indonesia. Appl Water Sci 6(3):279–292

    Article 

    Google Scholar
     

  • Rösch C, Bräutigam K-R, Kopfmüller J, Stelzer V, Fricke A (2018) Sustainability assessment of the German energy transition. Energy Sustain Soc 8(1):12

    Article 

    Google Scholar
     

  • Guinée J (2016) Life cycle sustainability assessment: what is it and what are its challenges? In: Clift R, Druckman A (eds) Taking stock of industrial ecology. Springer International Publishing, Cham


    Google Scholar
     

  • Klöpffer W (2003) Life-Cycle based methods for sustainable product development. Int J Life Cycle Assess 8(3):157–159

    Article 

    Google Scholar
     

  • Klöpffer W (2008) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13(2):89–95

    Article 

    Google Scholar
     

  • Finkbeiner M, Schau EM, Lehmann A, Traverso M (2010) Towards life cycle sustainability assessment. Sustainability 2(10):3309–3322

    Article 

    Google Scholar
     

  • Costa D, Quinteiro P, Dias AC (2019) A systematic review of life cycle sustainability assessment: current state, methodological challenges, and implementation issues. Science Total Environ 686:774–787

    Article 

    Google Scholar
     

  • Moni SM, Mahmud R, High K, Carbajales-Dale M (2020) Life cycle assessment of emerging technologies: a review. J Ind Ecol 24(1):52–63

    Article 

    Google Scholar
     

  • Zhao G, Nielsen ER, Troncoso E, Hyde K, Romeo JS, Diderich M (2019) Life cycle cost analysis: a case study of hydrogen energy application on the Orkney Islands. Int J Hydrogen Energy 44(19):9517–9528

    Article 

    Google Scholar
     

  • Muñoz I, Portillo F, Rosiek S, Batlles FJ, Martínez-Del-Río J, Acasuso I, Piergrossi V, De Sanctis M, Chimienti S, Di Iaconi C (2019) Prospective environmental and economic assessment of solar-assisted thermal energy recovery from wastewater through a sequencing batch biofilter granular reactor. J Clean Prod 212:1300–1309

    Article 

    Google Scholar
     

  • Arvidsson R, Tillman AM, Sandén BA, Janssen M, Nordelöf A, Kushnir D, Molander S (2018) Environmental assessment of emerging technologies: recommendations for prospective LCA. J Ind Ecol 22(6):1286–1294

    Article 

    Google Scholar
     

  • Hetherington AC, Borrion AL, Griffiths OG, McManus MC (2014) Use of LCA as a development tool within early research: challenges and issues across different sectors. Int J Life Cycle Assess 19(1):130–143

    Article 

    Google Scholar
     

  • Sandin G, Clancy G, Heimersson S, Peters GM, Svanström M, Ten Hoeve M (2014) Making the most of LCA in technical inter-organisational R&D projects. J Clean Prod 70:97–104

    Article 

    Google Scholar
     

  • Zimmermann BM, Dura H, Baumann MJ, Weil MR (2015) Prospective time-resolved LCA of fully electric supercap vehicles in Germany. Integr Environ Assess Manag 11(3):425–434

    Article 

    Google Scholar
     

  • Thonemann N, Schulte A, Maga D (2020) How to conduct prospective life cycle assessment for emerging technologies? A systematic review and methodological guidance. Sustainability 12(3):1192

    Article 

    Google Scholar
     

  • Mendoza Beltran A, Cox B, Mutel C, van Vuuren DP, Font Vivanco D, Deetman S, Edelenbosch OY, Guinée J, Tukker A (2020) When the background matters: using scenarios from integrated assessment models in prospective life cycle assessment. J Ind Ecol 24(1):64–79

    Article 

    Google Scholar
     

  • Junne T, Saiger M, Buchgeister J, Simon S, Naegler T (2019) Integrating future background scenarios for prospective LCA—method and case study on the German energy system. Poster Abstracts, WE120 pp. 307. Helsinki, Finland

  • Bhat I, Prakash R (2009) LCA of renewable energy for electricity generation systems—a review. Renew Sustain Energy Rev 13(5):1067–1073

    Article 

    Google Scholar
     

  • Hiremath M, Derendorf K, Vogt T (2015) Comparative life cycle assessment of battery storage systems for stationary applications. Environ Sci Technol 49(8):4825–4833

    Article 

    Google Scholar
     

  • Sunde K, Brekke A, Solberg B (2011) Environmental impacts and costs of woody biomass-to-liquid (BTL) production and use—a review. Forest Policy Econ 13(8):591–602

    Article 

    Google Scholar
     

  • Mehmeti A, Angelis-Dimakis A, Arampatzis G, McPhail S, Ulgiati S (2018) Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments 5(2):24

    Article 

    Google Scholar
     

  • DIN Standards Committee Principles of Environmental Protection (2006) Environmental management—life cycle assessment—principles and framework (ISO 14040:2006). DIN German Institute for Standardization

  • DIN Standards Committee Principles of Environmental Protection (2006) Environmental management—life cycle assessment—requirements and guidelines (ISO 14044:2006). DIN German Institute for Standardization

  • Guinée JB, Lindeijer E (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Springer Science & Business Media, Berlin


    Google Scholar
     

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2013) ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, Netherlands.

  • European Commission-Joint Research Centre – Institute for Environment and Sustainability (2011) International Reference Life Cycle Data System (ILCD) Handbook—Recommendations for Life Cycle Impact Assessment in the European context based on existing environmental impact assessment models and factors. Publications Office of the European Union, Luxemburg


    Google Scholar
     

  • GreenDelta (2018) openLCA. GreenDelta GmbH, Berlin


    Google Scholar
     

  • ifu Hamburg (2020) umberto. Eco-Efficiency Software. ifu, Hamburg

  • Sphera (2020) GaBi Software suite. LCA Software. sphera, Germany

  • Swiss Centre for Live Cycle Inventories (2016) Ecoinvent database version 3.3. Swiss Centre for Live Cycle Inventories, Zurich


    Google Scholar
     

  • Verein Deutscher Ingenieure (VDI) (2005) Beschaffung, Betrieb und Instandhaltung von Produktionsmitteln unter Anwendung von Life Cycle Costing (LCC) (VDI 2884). VDI-Handbuch Betriebstechnik, Teil 4

  • Swarr TE, Hunkeler D, Klöpffer W, Pesonen H-L, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Assess 16(5):389–391

    Article 

    Google Scholar
     

  • International Electrotechnical Commission (2004) DEPENDABILITY MANAGEMENT PART 3-3: APPLICATION GUIDE-LIFE CYCLE COSTING. International Standard IEC 60300-3-3: 2004

  • Verein Deutscher Ingenieure (VDI) (2005) Purchase, operating and maintenance of production equipment using Life Cycle Costing (LCC) (VDI 2884). VDI-Handbuch Betriebstechnik, Teil 4

  • Mytilinou V, Kolios AJ (2019) Techno-economic optimisation of offshore wind farms based on life cycle cost analysis on the UK. Renew Energy 132:439–454

    Article 

    Google Scholar
     

  • Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers. McGraw-Hill University of Colorado, USA


    Google Scholar
     

  • Lauer M (2008) Methodology guideline on techno economic assessment (TEA). Generated in the Framework of ThermalNet WP3B Economics. Intelligent Energy Europe

  • Kost C, Shammugam S, Jülch V, Nguyen H-T, Schlegl T (2018) Stromgestehungskosten Erneuerbare Energien. Fraunhofer Institut für solare Energiesysteme (ISE), Freiburg


    Google Scholar
     

  • Stolzenberger C, Then O (2015) Levelised cost of electricity 2015. VGB PowerTech 95(12): 94-96

  • Jørgensen A, Le Bocq A, Nazarkina L, Hauschild M (2008) Methodologies for social life cycle assessment. Int J Life Cycle Assess 13(2):96

    Article 

    Google Scholar
     

  • Benoît Norris C (2014) Data for social LCA. Int J Life Cycle Assess 19(2):261–265

    Article 

    Google Scholar
     

  • UNEP (2020) Guidelines for social life cycle assessment of products and organizations 2020. United Nations Environment Programme (UNEP), Paris


    Google Scholar
     

  • Lehmann A, Zschieschang E, Traverso M, Finkbeiner M, Schebek L (2013) Social aspects for sustainability assessment of technologies—challenges for social life cycle assessment (SLCA). Int J Life Cycle Assess 18(8):1581–1592

    Article 

    Google Scholar
     

  • Ekener-Petersen E, Höglund J, Finnveden, G (2014) Screening potential social impacts of fossil fuels and biofuels for vehicles. Energy Policy 73:416–426

    Article 

    Google Scholar
     

  • Wulf C, Zapp P, Schreiber A, Marx J, Schlör H (2017) Lessons learned from a life cycle sustainability assessment of rare earth permanent magnets. J Ind Ecol 21(6):1578–1590

    Article 

    Google Scholar
     

  • Onat NC, Kucukvar M, Halog A, Cloutier S (2017) Systems thinking for life cycle sustainability assessment: a review of recent developments, applications, and future perspectives. Sustainability 9(5):706

    Article 

    Google Scholar
     

  • Zamagni A, Pesonen H-L, Swarr T (2013) From LCA to Life cycle sustainability assessment: concept, practice and future directions. Int J Life Cycle Assess 18(9):1637–1641

    Article 

    Google Scholar
     

  • Deutsche Bundesbank, Time series BBK01.WZ3449: Term structure of interest rates on listed Federal securities (method by Svensson)/residual maturity of 20.0 years / end of month 2017. http://www.bundesbank.de/Navigation/EN/Statistics/Time_series_databases/Macro_economic_time_series/its_details_value_node.html?listId=www_skms_it03a&tsId=BBK01.WZ3449. Accessed 15 Sep 2017.

  • Basberg BL (1987) Patents and the measurement of technological change: a survey of the literature. Res Policy 16(2–4):131–141

    Article 

    Google Scholar
     

  • Song G (2018) python-epo-ops-client 2.3.2,” 15-Jan-2018. Python Client for the European Patent Office’s Open Patent Services API. publ. online https://pypi.org/project/python-epo-ops-client/

  • Baumann M, Domnik T, Haase M, Wulf C, Emmerich P, Rösch C, Zapp P, Naegler T, Weil M (2021) Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy. Technol Forecast Soc Change 165:120505

    Article 

    Google Scholar
     

  • Ernst H (2003) Patent information for strategic technology management. World Patent Inf 25(3):233–242

    Article 

    Google Scholar
     

  • Blundell R, Griffith R, Van Reenen J (1999) Market share, market value and innovation in a panel of British manufacturing firms. Rev Econ Stud 66(3):529–554

    MATH 
    Article 

    Google Scholar
     

  • Lee K, Lee S (2013) Patterns of technological innovation and evolution in the energy sector: a patent-based approach. Energy Policy 59:415–432

    Article 

    Google Scholar
     

  • Renewable Energy Agency (2021) Acceptance of renewable energy in Germany 2019. https://www.unendlich-viel-energie.de/english/acceptance-of-renewable-energy-in-germany-2019

  • Huijts NM, Molin EJ, van Wee B (2014) Hydrogen fuel station acceptance: A structural equation model based on the technology acceptance framework. J Environ Psychol 38:153–166

    Article 

    Google Scholar
     

  • Miguel E, Oltra C (2016) Hyacinth: Report on Methodologies and factors. Cidaut Ciemat, Valladolid


    Google Scholar
     

  • Emmerich P, Weil M, Baumann M (2019) Citizen concerns and acceptance for novel energy technologies. IET/CICS.NOVA, Innovation and Technology Studies pole at FCT-UNL, Centro Interdisciplinar de Ciências Sociais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica

  • SoSci Survey GmbH (2020) SoSci der online Fragebogen. online platform. SoSci GmbH, München. https://www.soscisurvey.de/

  • Emmerich P, Hülemeier A-G, Jendryczko D, Baumann MJ, Weil M, Baur D (2020) Public acceptance of emerging energy technologies in context of the German energy transition. Energy Policy 142:111516

    Article 

    Google Scholar
     

  • Wulf C, Zapp P (2021) Sustainability assessment of innovative energy technologies—hydrogen from wind power as a fuel for mobility applications. J Sustain Dev Energy Water Environ Syst. 9(3):1080371

  • Mönning A, Schneemann C, Weber E, Zika G, Helmrich R (2018) Elektromobilität 2035—Effekte auf Wirtschaft und Erwerbstätigkeit durch die Elektrifizierung des Antriebsstrangs von Personenkraftwagen. Institut für Arbeitsmarkt und Berufsforschung, Nürnberg


    Google Scholar
     

  • Pregger T, Naegler T, Weimer-Jehle W, Prehofer S, Hauser W (2020) Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building. Clim Change 162(4):1743–1762

    Article 

    Google Scholar
     

  • Ahmad J, Imran M, Khalid A, Iqbal W, Ashraf SR, Adnan M, Ali SF, Khokhar KS (2018) Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: a case study of Kallar Kahar. Energy 148:208–234

    Article 

    Google Scholar
     

  • Henrich E, Dahmen N, Dinjus E, Sauer J (2015) The role of biomass in a future world without fossil fuels. Chem Ing Tec 87(12):1667–1685

    Article 

    Google Scholar
     

  • Dahmen N, Abeln J, Eberhard M, Kolb T, Leibold H, Sauer J, Stapf D, Zimmerlin B (2017) The bioliq process for producing synthetic transportation fuels. WIREs Energy Environ2017, 6:e236. https://doi.org/10.1002/wene.236

    Article 

    Google Scholar
     

  • Haase M, Rösch C (2018) Life cycle assessment of the thermochemical conversion of biomass for the production of fuel, electricity and heat. In: ETA-Florence Renewable Energies: Proceedings of the 26th European Biomass Conference and Exhibition, Copenhagen, Denmark, 14.-17.05.2018. ETA-Florence Renewable Energies 2018, publ. online, pp. 1450–1457, Florence, Italy

  • Haase M, Rösch C (2019) Sustainability assessment of innovative energy technologies – Integrated biomass-based production of fuel, electricity and heat. In: ETA-Florence Renewable Energies: Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27.-30.05.2019. ETA-Florence Renewable Energies 2019, publ. online, pp. 1642–1653, Florence, Italy

  • Brosowski A, Thrän D, Mantau U, Mahro B, Erdmann G, Adler P, Stinner W, Reinhold G, Hering T, Blanke C (2016) A review of biomass potential and current utilisation–Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 95:257–272

    Article 

    Google Scholar
     

  • Brosowski A, Adler P, Erdmann G, Stinner W, Thrän D, Mantau U (2015) Biomassepotenziale von Rest-und Abfallstoffen—Status Quo in Deutschland Schriftenreihe nachwachsende Rohstoffe. Fachagentur Nachwachsende Rohstoffe eV (FNR), Gülzow-Prüzen


    Google Scholar
     

  • Kappler GO (2007) Systemanalytische Untersuchung zum Aufkommen und zur Bereitstellung von energetisch nutzbarem Reststroh und Waldrestholz in Baden-Württemberg–eine auf das Karlsruher bioliq®-Konzept ausgerichtete Standortanalyse. Forschungszentrum Karlsruhe GmbH, Karlsruhe


    Google Scholar
     

  • Berning F (2013) CO2—nicht nur der Motor macht´s. top agrar 7:108-111

  • Viebahn P, Nitsch J, Fischedick M, Esken A, Schüwer D, Supersberger N, Zuberbühler U, Edenhofer O (2007) Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. Int J Greenhouse Gas Control 1(1):121–133

    Article 

    Google Scholar
     

  • Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL) (2020) KTBL-Feldarbeitsrechner. https://daten.ktbl.de/feldarbeit/entry.html.

  • Leible L, Kälber S, Kappler G (2011) Systemanalyse zur Gaserzeugung aus Biomasse KIT. Scientific Publishing, Karlsruhe


    Google Scholar
     

  • Mineralöl Wirtschaftsverband e.v. (MWV) (2020) Zusammensetzung des Verbraucherpreises für Superbenzin. https://www.mwv.de/statistiken/preiszusammensetzung/. Accessed 12 Feb 2020.

  • Allgemeiner Deutscher Automobilclub e. V. (ADAC) (2021) Automarken & Modelle. VW Golf 1.5 TSI OPF ACT IQ.Drive (01/19 – 08/19). online source https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/?filter=ONLY_RECENT&sort=SORTING_DESC

  • Noun Project (2019) Icons licenced by Creative Commons CCBY: bales of hay by Tomasz Pasternak from the Noun Project, tractor and trailer by Dan Ensor from the Noun Project, factory by Norbert Kucsera from the Noun Project, landscape by Becris from the Noun Project, tank car by Vectors Market from the Noun Project, railroad by Ataur Rahman from the Noun Project, factory by Creative Stall from the Noun Project, van by Mourad Mokrane from the Noun Project, plug by Gregor Cresnar from the Noun Project, industry by ProSymbols from the Noun Project. The Noun Project, Culver City

  • Wulf C, Zapp P, Schreiber A (2020) Review of power-to-X demonstration projects in Europe. Front Energy Res. 8:191

    Article 

    Google Scholar
     

  • Caglayan DG, Weber N, Heinrichs HU, Linßen J, Robinius M, Kukla PA, Stolten D (2020) Technical potential of salt caverns for hydrogen storage in Europe. Int J Hydrogen Energy 45(11):6793–6805

    Article 

    Google Scholar
     

  • Wulf C, Kaltschmitt M (2018) Hydrogen supply chains for mobility—environmental and economic assessment. Sustainability 10(6):1699

    Article 

    Google Scholar
     

  • Koj JC, Wulf C, Schreiber A, Zapp P (2017) Site-dependent environmental impacts of industrial hydrogen production by alkaline water electrolysis. Energies 10(7):860

    Article 

    Google Scholar
     

  • Robinius M (2015) Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. RWTH Aachen, Jülich


    Google Scholar
     

  • Miotti M, Hofer J, Bauer C (2017) Integrated environmental and economic assessment of current and future fuel cell vehicles. Int J Life Cycle Assess 22(1):94–110

    Article 

    Google Scholar
     

  • Benitez A, Wulf C, de Palmenaer A, Lengersdorf M, Röding T, Grube T, Robinius M, Stolten D, Kuckshinrichs W (2021) Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank. J Clean Prod 278:123277

    Article 

    Google Scholar
     

  • Peters JF, Baumann M, Zimmermann B, Braun J, Weil M (2017) The environmental impact of Li-Ion batteries and the role of key parameters–a review. Renew Sustain Energy Rev 67:491–506

    Article 

    Google Scholar
     

  • FEV (2020) Impact of fuel cell technology on the machinery and component supplier industry. FEV Consulting, Aachen


    Google Scholar
     

  • Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S (2017) Future cost and performance of water electrolysis: an expert elicitation study. Int J Hydrogen Energy 42(52):30470–30492

    Article 

    Google Scholar
     

  • Noack C, Burggraf F, Hosseiny S, Lettenmeier P, Kolb S, Belz S, Kallo J, Friedrich A, Pregger T, Cao KK, Heide D, Naegler T, Borggrefe F, Bünger U, Michalski J, Raksha T, Vogelstätter C, Smolinka T, Crotogino F, Donadei S, Horvath PL, Schneider GS (2015) Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck. German Aerospace Center (DLR), Stuttgart


    Google Scholar
     

  • Stolzenburg K, Mubbala R (2013) Hydrogen liquefaction report—whole chain assessment. Integrated design for demonstration of efficient liquefaction of hydrogen (IDEALHY), Fuel Cells and Hydrogen Joint Undertaking (FCH JU), Brussels

  • HySTOCK (2020) A preliminary feasibility study. VTT Technical Research Centre of Finland, Espoo


    Google Scholar
     

  • Baumann M, Peters J, Weil M, Grunwald A (2017) CO2 footprint and life-cycle costs of electrochemical energy storage for stationary grid applications. Energy Technol 5(7):1071–1083

    Article 

    Google Scholar
     

  • Hottenroth H, Peters J, Baumann M, Viere T, Tietze I (2018) Life-cycle analysis for assessing environmental impact. Energy Stor Opt Environ Impact 46:261


    Google Scholar
     

  • Weber S, Peters JF, Baumann M, Weil M (2018) Life cycle assessment of a vanadium redox flow battery. Environ Sci Technol 52(18):10864–10873

    Article 

    Google Scholar
     

  • Baumann M, Peters J, Weil M (2020) Exploratory multicriteria decision analysis of utility-scale battery storage technologies for multiple grid services based on life-cycle approaches. Energ Technol 8(11):1901019

    Article 

    Google Scholar
     

  • Wood Mackenzie (2021) LFP to overtake NMC as dominant stationary storage chemistry by 2030. online News Release. https://www.woodmac.com/press-releases/lfp-to-overtake-nmc-as-dominant-stationary-storage-chemistry-by-2030/

  • Lee S-H, Lee S, Jin B-S, Kim H-S (2019) Optimized electrochemical performance of Ni rich LiNi 0.91 Co 0.06 Mn 0.03 O 2 cathodes for high-energy lithium ion batteries. Sci Rep 9(1):1–7


    Google Scholar
     

  • Weil M, Peters J, Baumann M (2020) Stationary battery systems: Future challenges regarding resources, recycling, and sustainability. The Material Basis of Energy Transitions, Elsevier

  • Wu F, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49(5):1569–1614

    Article 

    Google Scholar
     

  • Peters JF, Weil M (2018) Providing a common base for life cycle assessments of Li-Ion batteries. J Clean Prod 171:704–713

    Article 

    Google Scholar
     

  • Mohr M, Peters JF, Baumann M, Weil M (2020) Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J Ind Ecol 24(6):1310–1322

    Article 

    Google Scholar
     

  • Ersoy H, Baumann M, Weil M (2021) Evaluation Study of Regional Added Value Creation by Lithium-ion Battery Energy Storage (BES) towards 2050. Energy Transition and Sustainability Conference (APEEN 2021), Online, 20–21. Januar 2021

  • International Energy Agency (IEA) (2020) Innovation in batteries and electricity storage—a global analysis based on patent data. International Energy Agency. publ. online. https://iea.blob.core.windows.net/assets/77b25f20-397e-4c2f-8538-741734f6c5c3/battery_study_en.pdf.

  • Statista GmbH (2021) Preisentwicklung ausgewählter OPEC-Rohöle in den Jahren 1960 bis 2021. online query. https://de.statista.com/statistik/daten/studie/810/umfrage/rohoelpr+eisentwicklung-opec-seit-1960/.

  • Bueno C, Hauschild MZ, Rossignolo JA, Ometto AR, Mendes NC (2016) Sensitivity analysis of the use of Life Cycle Impact Assessment methods: a case study on building materials. J Clean Prod 112:2208–2220

    Article 

    Google Scholar
     

  • Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122

    Article 

    Google Scholar
     

  • Stattman SL, Gupta A, Partzsch L, Oosterveer P (2018) Toward sustainable biofuels in the European Union? Lessons from a decade of hybrid biofuel governance. Sustainability 10(11):4111

    Article 

    Google Scholar
     

  • Tomei J, Helliwell R (2016) Food versus fuel? Going beyond biofuels. Land Use Policy 56:320–326

    Article 

    Google Scholar
     

  • Chin H-C, Choong W-W, Alwi SRW, Mohammed AH (2014) Issues of social acceptance on biofuel development. J Clean Prod 71:30–39

    Article 

    Google Scholar
     

  • Kim Y, Kim M, Kim W (2013) Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy. Energy Policy 61:822–828

    Article 

    Google Scholar
     

  • Wang S, Wang J, Lin S, Li J (2020) How and when does information publicity affect public acceptance of nuclear energy? Energy 198:117290

    Article 

    Google Scholar
     

  • Diner E, Suh E (1997) Subjective well-being: an integrated perspective. Annual review of gerontology and gerontology and geriatrics. Springer, New York


    Google Scholar
     

  • Nagaoka S, Motohashi K, Goto A (2010) Patent statistics as an innovation indicator. Handbook of the Economics of Innovation, Volume 2 pp 1083-1127, Elsevier

  • Dehghani Madvar M, Aslani A, Ahmadi MH, Karbalaie Ghomi NS (2019) Current status and future forecasting of biofuels technology development. Int J Energy Res 43(3):1142–1160

    Article 

    Google Scholar
     

  • Haase M, Wulf C, Baumann M, Ersoy H, Koj JC, Harzendorf F, Mesa Estrada LS (2022) Multi criteria decision analysis for prospective sustainability assessment of alternative technologies and fuels for individual motorized transport. UNDER REVISION at Clean Technologies and Environmental Policy

  • Arbeitsgemeinschaft Energiebilanzen (AGEB) (2021) Stromerzeugung nach Energieträgern 1990–2020 (Stand Februar 2021). AGEB, https://www.ag-energiebilanzen.de/

  • Statista GmbH (2021) Inflationsrate in Deutschland von 1992 bis 2020. online query. https://de.statista.com/statistik/daten/studie/1046/umfrage/inflationsrate-veraenderung-des-verbraucherpreisindexes-zum-vorjahr/

  • Statista GmbH (2021) Börsenstrompreis am EPEX-Spotmarkt für Deutschland/Luxemburg von Januar 2020 bis Januar 2021. online query. https://de.statista.com/statistik/daten/studie/289437/umfrage/strompreis-am-epex-spotmarkt/

  • BDEW (2021) BDEW-Strompreisanalyse Januar 2021. Bundesverband der Energie- und Wasserwirtschaft. publ. online. https://www.bdew.de/media/documents/BDEW-Strompreisanalyse_no_halbjaehrlich_Ba_online_28012021.pdf

  • Statista GmbH (2021) Gaspreis nach Verbrauchergruppen in Deutschland in den Jahren 2010 bis 2020. online query. https://de.statista.com/statistik/daten/studie/154961/umfrage/gaspreis-nach-verbrauchergruppe-seit-2006/

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)