• Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou H, He X, He Y, Ou C, Cao P. Exosomal circRNAs: emerging players in tumor metastasis. Front Cell Dev Biol. 2021;9:786224.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article 
    PubMed 

    Google Scholar
     

  • Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature. 2016;540(7634):588–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hosseini H, Obradovic MMS, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016;540(7634):552–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu Z, Curtis C. Looking backward in time to define the chronology of metastasis. Nat Commun. 2020;11(1):3213–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell sequencing: new developments and medical applications. Cell Biosci. 2019;9:53–61.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perone Y, Farrugia AJ, Rodríguez-Meira A, Győrffy B, Ion C, Uggetti A, et al. SREBP1 drives Keratin-80-dependent cytoskeletal changes and invasive behavior in endocrine-resistant ERα breast cancer. Nat Commun. 2019;10(1):3791–805.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chen YC, Sahoo S, Brien R, Jung S, Humphries B, Lee W, et al. Single-cell RNA-sequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis. Analyst. 2019;144(24):7296–309.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bartoschek M, Oskolkov N, Bocci M, Lovrot J, Larsson C, Sommarin M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 2018;9(1):5150–62.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Andrews TS, Kiselev VY, McCarthy D, Hemberg M. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc. 2021;16(1):1–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, et al. Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res. 2021;40(1):81–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li L, Xiong F, Wang Y, Zhang S, Gong Z, Li X, et al. What are the applications of single-cell RNA sequencing in cancer research: a systematic review. J Exp Clin Cancer Res. 2021;40(1):163–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):1–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21(7):1160–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol. 2012;30(8):777–82.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell. 2018;174(5):1293–308.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yilmaz S, Singh AK. Single cell genome sequencing. Curr Opin Biotechnol. 2012;23(3):437–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhuo W, Xiaohan S, Qihui S. Advances in single-cell whole genome sequencing technology and its application in biomedicine. Yi Chuan. 2021;43(2):108–17.

    PubMed 

    Google Scholar
     

  • Bai X, Li Y, Zeng X, Zhao Q, Zhang Z. Single-cell sequencing technology in tumor research. Clin Chim Acta. 2021;518:101–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med. 2015;7:121–34.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tian Y, Carpp LN, Miller HER, Zager M, Newell EW, Gottardo R. Single-cell immunology of SARS-CoV-2 infection. Nat Biotechnol. 2022;40(1):30–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17(1):77–83.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14(4):395–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yanai I, Hashimshony T. CEL-Seq2-single-cell RNA sequencing by multiplexed linear amplification. Methods Mol Biol. 2019;1979:45–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-Seq systems. Mol Cell. 2019;73(1):130–42.

    PubMed 
    Article 

    Google Scholar
     

  • Aicher TP, Carroll S, Raddi G, Gierahn T, Wadsworth MH 2nd, Hughes TK, et al. Seq-Well: a sample-efficient, portable picowell platform for massively parallel single-cell RNA sequencing. Methods Mol Biol. 2019;1979:111–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12(1):44–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi JR, Yong KW, Choi JY, Cowie AC. Single-cell RNA sequencing and its combination with protein and DNA analyses. Cells. 2020;9(5):1130.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fu J, Akat KM, Sun Z, Zhang W, Schlondorff D, Liu Z, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol. 2019;30(4):533–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol. 2019;20(7):928–42.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:43882.

    CAS 
    Article 

    Google Scholar
     

  • Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science. 2018;360(6392):eaar3131.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang J, Xu Y, Chen Z, Liang J, Lin Z, Liang H, et al. Liver immune profiling reveals pathogenesis and therapeutics for biliary atresia. Cell. 2020;183(7):1867–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su T, Yang Y, Lai S, Jeong J, Jung Y, McConnell M, et al. Single-cell transcriptomics reveals zone-specific alterations of liver sinusoidal endothelial cells in cirrhosis. Cell Mol Gastroenterol Hepatol. 2021;11(4):1139–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khateb M, Azriel A, Levi BZ. The third intron of IRF8 is a cell-type-specific chromatin priming element during mouse embryonal stem cell differentiation. J Mol Biol. 2019;431(2):210–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, McKechnie JL, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, Lee JI, Suh YL, Ku BM, Eum HH, et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun. 2020;11(1):2285–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, Ren X, Wang L, Wu X, Zhang J, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. 2012;374(6574):6474.

    Article 
    CAS 

    Google Scholar
     

  • Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28–43.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeeshan R, Mutahir Z. Cancer metastasis – tricks of the trade. Bosn J Basic Med Sci. 2017;17(3):172–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter KW, Amin R, Deasy S, Ha NH, Wakefield L. Genetic insights into the morass of metastatic heterogeneity. Nat Rev Cancer. 2018;18(4):211–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu XX, Yue GG, Dong JR, Lam CW, Wong CK, Qiu MH, et al. Actein Inhibits tumor growth and metastasis in HER2-positive breast tumor bearing mice via suppressing AKT/MTOR and RAS/RAF/MAPK signaling pathways. Front Oncol. 2020;10:854–68.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition. Cells. 2020;9(1):217–24.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ge X, Liu W, Zhao W, Feng S, Duan A, Ji C, et al. Exosomal transfer of LCP1 promotes osteosarcoma cell tumorigenesis and metastasis by activating the JAK2/STAT3 signaling pathway. Mol Ther Nucleic Acids. 2020;21:900–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu HH, Zhu XY, Zhou MH, Cheng GY, Lou WH. Effect of WNT5A on epithelial-mesenchymal transition and its correlation with tumor invasion and metastasis in nasopharyngeal carcinoma. Asian Pac J Trop Med. 2014;7(6):488–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature. 2012;487(7408):510–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin X, Xiaoqin H, Jiayu C, Li F, Yue L, Ximing X. Long non-coding RNA miR143HG predicts good prognosis and inhibits tumor multiplication and metastasis by suppressing mitogen-activated protein kinase and Wnt signaling pathways in hepatocellular carcinoma. Hepatol Res. 2019;49(8):902–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang F, Zhang H, Wang Z, Yu M, Tian R, Ji W, et al. P-glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells. Biochem Pharmacol. 2014;87(2):292–302.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tomono T, Yano K, Ogihara T. Snail-induced epithelial-to-mesenchymal transition enhances P-gp-mediated multidrug resistance in HCC827 cells. J Pharm Sci. 2017;106(9):2642–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang HC, Zhang F, Wu B, Han JH, Ji W, Zhou Y, et al. Identification of the Interaction between P-Glycoprotein and Anxa2 inMultidrug-resistant human breast cancer cells. Cancer Biol Med. 2012;9(2):99–104.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribelles N, Santonja A, Pajares B, Llacer C, Alba E. The seed and soil hypothesis revisited: current state of knowledge of inherited genes on prognosis in breast cancer. Cancer Treat Rev. 2014;40(2):293–9.

    PubMed 
    Article 

    Google Scholar
     

  • Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ganesh K, Massague J. Targeting metastatic cancer. Nat Med. 2021;27(1):34–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang HG, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol. 2014;184(1):28–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47(4):320–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76–91.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 2020;353:104119.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang D, Wang X, Si M, Yang J, Sun S, Wu H, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 2020;474:36–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li K, Kang H, Wang Y, Hai T, Rong G, Sun H. Letrozole-induced functional changes in carcinoma-associated fibroblasts and their influence on breast cancer cell biology. Med Oncol. 2016;33(7):64–74.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jayanthi P, Varun BR, Selvaraj J. Epithelial-mesenchymal transition in oral squamous cell carcinoma: An insight into molecular mechanisms and clinical implications. J Oral Maxillofac Pathol. 2020;24(1):189–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Foroni C, Broggini M, Generali D, Damia G. Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev. 2012;38(6):689–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 2020;30(10):764–76.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu S, Zhang H, Fouladdel S, Li H, Keller E, Wicha MS, et al. Cellular, transcriptomic and isoform heterogeneity of breast cancer cell line revealed by full-length single-cell RNA sequencing. Comput Struct Biotechnol J. 2020;18:676–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl j Med. 2012;366:883–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, et al. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res. 2017;27(8):1287–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin W, Noel P, Borazanci EH, Lee J, Amini A, Han IW, et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 2020;12(1):80–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Y, Ye G, Huang L, Zhang C, Sheng Y, Wu B, et al. Single-cell transcriptome analysis demonstrates inter-patient and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma. Aging. 2020;12(21):21559–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Okamoto T, duVerle D, Yaginuma K, Natsume Y, Yamanaka H, Kusama D, et al. Comparative analysis of patient-matched PDOs revealed a reduction in OLFM4-associated clusters in metastatic lesions in colorectal cancer. Stem Cell Reports. 2021;16(4):954–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol. 2020;22(3):310–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chaika NV, Yu F, Purohit V, Mehla K, Lazenby AJ, DiMaio D, et al. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma. PLoS ONE. 2012;7(3):e32996.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. 2020;11(1):6322–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, et al. Reproducible copy numbervariation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci U S A. 2013;110(52):21083–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Suda K, Kim J, Murakami I, Rozeboom L, Shimoji M, Shimizu S, et al. Innate genetic evolution of lung cancers and spatial heterogeneity: analysis of treatment-naive lesions. J Thorac Oncol. 2018;13(10):1496–507.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma KY, Schonnesen AA, Brock A, Van Den Berg C, Eckhardt SG, Liu Z, et al. Single-cell RNA sequencing of lung adenocarcinoma reveals heterogeneity of immune response-related genes. JCI Insight. 2019;4(4):e12138787.

    Article 

    Google Scholar
     

  • Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, et al. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer. Cell. 2018;173(7):1755–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jimenez-Sanchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell. 2017;170(5):927–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pan XW, Zhang H, Xu D, Chen JX, Chen WJ, Gan SS, et al. Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci. 2020;16(16):3149–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171(7):1611–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9(1):3588–97.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, et al. Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell. 2017;32(2):169–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med. 2012;4(8):675–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537(7618):102–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Poupon R, Chazouilleres O, Balkau B, Poupon RE. Clinical and biochemical expression of the histopathological lesions of primary biliary cirrhosis. UDCA-PBC Group J Hepatol. 1999;30(3):408–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Slotman GJ, Mohit T, Raina S, Swaminathan AP, Ohanian M, Rush BF Jr. The incidence of metastases after multimodal therapy for cancer of the head and neck. Cancer. 1984;54(9):2009–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hjortland GO, Meza-Zepeda LA, Beiske K, Ree AH, Tveito S, Hoifodt H. Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma. BMC Cancer. 2011;11:455–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nguyen A, Yoshida M, Goodarzi H, Tavazoie SF. Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. Nat Commun. 2016;7:11246–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 2015;349(6254):1351–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, MacBeath G. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell. 2014;159(4):844–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Iseri OD, Kars MD, Arpaci F, Atalay C, Pak I, Gunduz U. Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern. Biomed Pharmacother. 2011;65(1):40–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee MC, Lopez-Diaz FJ, Khan SY, Tariq MA, Dayn Y, Vaske CJ, et al. Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(44):4726–35.

    Article 
    CAS 

    Google Scholar
     

  • Prieto-Vila M, Usuba W, Takahashi RU, Shimomura I, Sasaki H, Ochiya T, et al. Single-cell analysis reveals a preexisting drug-resistant subpopulation in the luminal breast cancer subtype. Cancer Res. 2019;79(17):4412–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nath B, Bidkar AP, Kumar V, Dalal A, Jolly MK, Ghosh SS, et al. Deciphering hydrodynamic and drug-resistant behaviors of metastatic EMT breast cancer cells moving in a constricted microcapillary. J Clin Med. 2019;8(8):1194–208.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ozawa PMM, Alkhilaiwi F, Cavalli IJ, Malheiros D, de Souza Fonseca Ribeiro EM, Cavalli LR. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat. 2018;172(3):713–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmidt F, Efferth T. Tumor heterogeneity, single-cell sequencing, and drug resistance. Pharmaceuticals. 2016;9(2):33–43.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tripathi G, Tripathi A, Johnson J, Kashyap MK. Role of RNA splicing in regulation of cancer stem cell. Curr Stem Cell Res Ther. 2021. https://doi.org/10.2174/1574888X16666211207103628.

    Article 
    PubMed 

    Google Scholar
     

  • Franken A, Honisch E, Reinhardt F, Meier-Stiegen F, Yang L, Jaschinski S, et al. Detection of ESR1 mutations in single circulating tumor cells on estrogen deprivation therapy but not in primary tumors from metastatic luminal breast cancer patients. J MolDiagn. 2020;22(1):111–21.

    CAS 

    Google Scholar
     

  • Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, et al. Roles of circRNAs in the tumour microenvironment. Mol Cancer. 2020;19(1):14–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer. 2018;17(1):82–90.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee HO, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van den Bosch B, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet. 2020;52(6):594–603.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548(7667):297–303.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, et al. Referencecomponent analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017;49(5):708–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bao X, Shi R, Zhao T, Wang Y, Anastasov N, Rosemann M, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol Immunother. 2021;70(1):189–202.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Winterhoff BJ, Maile M, Mitra AK, Sebe A, Bazzaro M, Geller MA, et al. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells. Gynecol Oncol. 2017;144(3):598–606.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee H, Na KJ, Choi H. Differences in tumor immune microenvironment in metastatic sites of breast cancer. Front Oncol. 2021;11:649004.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Song J, Zhao Z, Yang M, Chen M, Liu C, et al. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett. 2020;470:84–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuipers J, Jahn K, Beerenwinkel N. Advances in understanding tumour evolution through single-cell sequencing. Biochim Biophys Acta Rev Cancer. 2017;1867(2):127–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Han K, Wang F-W, Cao C-H, Ling H, Chen J-W, Chen R-X, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Molecular Cancer. 2020;19(1):60–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F, Kerr DL, et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell. 2020;182(5):1232–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu K, Zhang W, Wang C, Hu L, Wang R, Wang C, et al. Integrative analyses of scRNA-seq and scATAC-seq reveal CXCL14 as a key regulator of lymph node metastasis in breast cancer. Hum Mol Genet. 2021;30(5):370–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526(7571):131–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang C, He H, Hu X, Liu A, Huang D, Xu Y, Chen L, Xu D. Development and validation of a metastasis-associated prognostic signature based on single-cell RNA-seq in clear cell renal cell carcinoma. Aging. 2019;11(22):10183–202.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2014;8(6):1905–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shaham U, Stanton KP, Zhao J, Li H, Raddassi K, Montgomery R, Kluger Y. Removal of batch effects using distributionmatching residual networks. Bioinformatics. 2017;33:2539–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li X, Wang K, Lyu Y, Pan H, Zhang J, Stambolian D, Susztak K, Reilly MP, Hu G, Li M. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat Commun. 2020;11:2338–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Elbashir MK, Ezz M, Mohammed M, Saloum SS. Lightweight convolutional neural network for breast cancer classification using RNA-seq gene expression data. IEEE Access. 2019;7:185338–48.

    Article 

    Google Scholar
     

  • Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun. 2018;9:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lauria A, Peirone S, Giudice MD, Priante F, Rajan P, Caselle M, Oliviero S, Cereda M. Identification of altered biological processes in heterogeneous RNA-sequencing data by discretization of expression profiles. Nucleic Acids Res. 2020;48:1730–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen R, Yang L, Goodison S, Sun Y. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data. Bioinformatics. 2020;36:1476–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao F, Wang W, Tan M, Zhu L, Zhang Y, Fessler E, Vermeulen L, Wang X. DeepCC: a novel deep learning-based framework for cancer molecular subtype classification. Oncogenesis. 2019;8(9):44–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng Q, Li J, Fan F, Cao H, Dai Z-Y, Wang Z-Y, Feng S-S. Identification and analysis of glioblastoma biomarkers based on single cell sequencing. Front Bioeng Biotechnol. 2020;8:167–73.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang J, Guan M, Wang Q, Zhang J, Zhou T, Sun X. Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas. Brief Bioinform. 2020;21:1080–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen G, Ning B, Shi T. Single-cell RNA-seq technologies and related computational data analysis. Front Genet. 2019;10:317–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang Y, He X, Nie H, Zhou J, Cao P, Ou C. Application of artificial intelligence to the diagnosis and therapy of colorectal cancer. Am J Cancer Res. 2020;10(11):3575–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poudineh M, Aldridge PM, Ahmed S, Green BJ, Kermanshah L, Nguyen V, Tu C, Mohamadi RM, Nam RK, Hansen A, et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat Nanotechnol. 2017;12(3):274–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poonpanichakul T, Shiao MS, Jiravejchakul N, Matangkasombut P, Sirachainan E, Charoensawan V, et al. Capturing tumour heterogeneity in pre- and post-chemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Biosci Rep. 2021;41(12):BSR20212093.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 2015;7(1):1–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su Z, Wang Z, Ni X, Duan J, Gao Y, Zhuo M, et al. Inferring the evolution and progression of small-cell lung cancer by single-cell sequencing of circulating tumor cells. Clin Cancer Res. 2019;25(16):5049–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kwan TT, Bardia A, Spring LM, Giobbie-Hurder A, Kalinich M, Dubash T, et al. A digital RNA signature of circulating tumor cells predicting early therapeutic response in localized and metastatic breast cancer. Cancer Discov. 2018;8(10):1286–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE. 2012;7(5):e33788.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. NatBiotechnol. 2014;32(5):479–84.

    CAS 

    Google Scholar
     

  • Miyamoto DT, Lee RJ, Kalinich M, LiCausi JA, Zheng Y, Chen T, et al. An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer. Cancer Discov. 2018;8(3):288–303.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shih A, Menzin A, Whyte J. Single-cell RNA-seq analysis of primary tumor and corresponding metastatic lesion in high-grade serous ovarian cancer. Clin Cancer Res. 2018;24(15):1611–24.


    Google Scholar
     

  • Ween MP, Oehler MK, Ricciardelli C. Role of versican, hyaluronan and CD44 in ovarian cancer metastasis. Int J Mol Sci. 2011;12(2):1009–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schulz M, Michels B, Niesel K, Stein S, Farin H, Rodel F, et al. Cellular and molecular changes of brain metastases-associated myeloid cells during disease progression and therapeutic response. Science. 2020;23(6):101178.

    CAS 

    Google Scholar
     

  • He X, Kuang G, Wu Y, Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med. 2021;11(6):468–87.

    Article 
    CAS 

    Google Scholar
     

  • Wu J, Zeng D, Zhi S, Ye Z, Qiu W, Huang N, Sun L, Wang C, Wu Z, Bin J, Liao Y, Shi M, Liao W. Single-cell analysis of a tumor-derived exosome signature correlates with prognosis and immunotherapy response. J Transl Med. 2021;19(1):381.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fathi M, Joseph R, Adolacion JRT, Martinez-Paniagua M, An X, Gabrusiewicz K, Mani SA, Varadarajan N. Single-cell cloning of breast cancer cells secreting specific subsets of extracellular vesicles. Cancers (Basel). 2021;13(17):4397.

    CAS 
    Article 

    Google Scholar
     

  • Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov. 2021;7(1):36–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang R, Song S, Harada K, Ghazanfari Amlashi F, Badgwell B, Pizzi MP, et al. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut. 2020;69(1):18–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fairfax BP, Taylor CA, Watson RA, Nassiri I, Danielli S, Fang H, et al. Peripheral CD8(+) T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat Med. 2020;26(2):193–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim KT, Lee HW, Lee HO, Song HJ, da Jeong E, Shin S, et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol. 2016;17:80–96.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013;14(9):618–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ren X, Kang B, Zhang Z. Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol. 2018;19(1):211.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell. 2020;181(2):236–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)