• Nilsson T, Rowell R. Historical wood—structure and properties. J Cult Herit. 2012;13:5–9.

    Article 

    Google Scholar
     

  • Hoffmann P. Conservation of archaeological ships and boats: personal experiences. London: Archetype Publications; 2013.


    Google Scholar
     

  • Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions. Remagen: Verlag Kessel; 2003.


    Google Scholar
     

  • Kim YS, Singh AP. Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA J. 2000;21:135–55.

    Article 

    Google Scholar
     

  • Hoffmann P, Jones MA. Structure and degradation process for waterlogged archaeological wood. In: Rowell RM, Barbour J, editors. Archaeological wood; properties, chemistry and preservation. Washington, DC: American Chemical Society; 1990. p. 35–65.


    Google Scholar
     

  • Blanchette RA. A review of microbial deterioration found in archaeological wood from different environments. Int Biodeterior. 2000;46:189–204.

    Article 

    Google Scholar
     

  • Björdal CG. Microbial degradation of waterlogged archaeological wood. J Cult Herit. 2012;13:118–22.

    Article 

    Google Scholar
     

  • Grattan DW. Waterlogged wood. In: Pearson C, editor. Conservation of marine archaeological objects. Oxford: Butterworth-Heinemann; 1987. p. 55–67.

    Chapter 

    Google Scholar
     

  • High KE, Penkman KEH. A review of analytical methods for assessing preservation in waterlogged archaeological wood and their application in practice. Herit Sci. 2020;8:1–33.

    Article 

    Google Scholar
     

  • Schniewind AP. Physical and mechanical properties of archaeological wood. In: Rowell RM, Barbour J, editors. Archaeological wood; properties, chemistry and preservation. Washington D.C: American Chemical Society; 1990. p. 87–109.


    Google Scholar
     

  • Barbour RJ, Leney L. Shrinkage and collapse in waterlogged archaeological wood: Contribution III, Hoko River Series. In: Grattan DW, McCawley JC. editors. Proceedings of the ICOM-CC waterlogged wood working group conference, Ottawa, 1981. Ottawa: ICOM-CC; 1982. p. 208–25.

  • Hawley OF. Wood-liquid relations. Technical bulletin, no. 248. Washington: United States Department of Agriculture, 1931.

  • Christensen BB. Om Konservering af Mosefundne Trægenstande. In: Kongelike Nordiske Oldskriftselskan, editor. Aarbøger for Nordisk Oldkyndighed og Historie 1951. Copenhagen: Nordisk Forlag; 1952. p. 22–62.


    Google Scholar
     

  • Grattan DW, Clarke RW. Conservation of waterlogged wood. In: Pearson C, editor. Conservation of marine archaeological objects. Oxford: Butterworth-Heinemann; 1987. p. 164–206.

    Chapter 

    Google Scholar
     

  • Grattan DW, McCawley JC. The potential of the canadian winter climate for the freeze-drying of degraded waterlogged wood. Stud Conserv. 1978;23:157–67.

    Article 

    Google Scholar
     

  • Grattan DW. A practical comparative study of several treatments for waterlogged wood. Stud Conserv. 1982;27:124–36.

    CAS 

    Google Scholar
     

  • Hoffmann P. On the efficiency of stabilisation methods for large waterlogged wooden objects, and on how to choose a method. In: Straetkver K, Huisman DJ, editors. Proceedings of the 10th ICOM-CC Group on wet organic archaeological materials conference, Amsterdam, 2007. Amersfoort: Rijksdienst Voor Archeologie, Cultuurlandschap En Monumenten; 2009. p. 323–50.

  • Bräker OU, Bill J, Mühlethaler B, Schoch W, Schweingruber FH, Haas A. Zum derzeitigen Stand der Nassholzkonservierung. Diskussion der Grundlagen und Resultate eines von Fachlaboratorien 1976–1978 durchgeführten Methodenvergleiches. Zeitschr f Schweiz Archaeol Kunstgesch. 1979;36:97–145.


    Google Scholar
     

  • Christensen BB. Developments in the treatment of waterlogged wood in the National Museum of Denmark during the years 1962–69. Stud Conserv. 1971;16:27–44.

    Article 

    Google Scholar
     

  • International Council of Museums. ICOM code of ethics for museums. Paris: ICOM; 2017.


    Google Scholar
     

  • Florian M-LE. Scope and history of archaeological wood. In: Rowell RM, Barbour J, editors. Archaeological wood; properties, chemistry and preservation. Washington: American Chemical Society; 1990. p. 3–32.


    Google Scholar
     

  • Jenssen V. Conservation of wet organic artefacts excluding wood. In: Pearson C, editor. Conservation of marine archaeological objects. Oxford: Butterworth-Heinemann; 1987. p. 122–63.

    Chapter 

    Google Scholar
     

  • Herbst CF. Om bevaring af oldsager af træ fundne i törvemoser. Antiquarisk tidsskrift. Kjøbenhavn: Det kongelige nordiske oldskriftselskab; 1861. p. 174–6.

  • Rathgen F. Die Konservierung von Altertumsfunden, Teil 2/3: Metalle und Metallegierungen, organische Stoffe: Mit Berücksichtigung ethnographischer und kunstgewerblicher Sammlungsgegenstände. Berlin: De Gruyter; 1924.

    Book 

    Google Scholar
     

  • Organ RM. Carbowax and other materials in the treatment of water-logged paleolithic wood. Stud Conserv. 1959;4:96–105.


    Google Scholar
     

  • Parrent JM. The conservation of waterlogged wood using sucrose. Stud Conserv. 1985;30:63–72.

    CAS 

    Google Scholar
     

  • Rosenqvist AM. The stabilizing of wood found in the Viking ship of Oseberg, Pt. II. Stud Conserv. 1959;4:62–72.

    CAS 

    Google Scholar
     

  • Broda M, Dąbek I, Dutkiewicz A, Dutkiewicz M, Popescu C-M, Mazela B, et al. Organosilicons of different molecular size and chemical structure as consolidants for waterlogged archaeological wood—a new reversible and retreatable method. Sci Rep. 2020;10:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Walsh Z, Janeček E-R, Hodgkinson JT, Sedlmair J, Koutsioubas A, Spring DR, et al. Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation. Proc Natl Acad Sci. 2014;111:17743–8.

    CAS 
    Article 

    Google Scholar
     

  • Walsh Z, Janeček E-R, Jones M, Scherman OA. Natural polymers as alternative consolidants for the preservation of waterlogged archaeological wood. Stud Conserv. 2017;62:173–83.

    CAS 
    Article 

    Google Scholar
     

  • McHale E, Steindal CC, Kutzke H, Benneche T, Harding SE. In situ polymerisation of isoeugenol as a green consolidation method for waterlogged archaeological wood. Sci Rep. 2017;7:1–9.

    Article 

    Google Scholar
     

  • Christensen M, Kutzke H, Hansen FK. New materials used for the consolidation of archaeological wood–past attempts, present struggles, and future requirements. J Cult Herit. 2012;13:183–90.

    Article 

    Google Scholar
     

  • Broda M, Hill CAS. Conservation of waterlogged wood—past, present and future perspectives. Forests. 2021;12:1193.

    Article 

    Google Scholar
     

  • Babiński L. Dimensional changes of waterlogged archaeological hardwoods pre-treated with aqueous mixtures of lactitol/trehalose and mannitol/trehalose before freeze-drying. J Cult Herit. 2015;16:876–82.

    Article 

    Google Scholar
     

  • Nguyen TD, Sakakibara K, Imai T, Tsujii Y, Kohdzuma Y, Sugiyama J. Shrinkage and swelling behavior of archaeological waterlogged wood preserved with slightly crosslinked sodium polyacrylate. J Wood Sci. 2018;64:294–300.

    CAS 
    Article 

    Google Scholar
     

  • Nguyen TD, Wakiya S, Matsuda K, Ngoc BD, Sugiyama J, Kohdzuma Y. Diffusion of chemicals into archaeological waterlogged hardwoods obtained from the Thang Long Imperial Citadel site, Vietnam. J Wood Sci. 2018;64:836–44.

    Article 
    CAS 

    Google Scholar
     

  • Imazu S, Ito K, Fujita H, Morgos A. The rapid trehalose conservation method for archaeological waterlogged wood and laquerware. In: Grant T. Cook C. editors. Proceedings of the 12th ICOM-CC Group on wet organic archaeological materials conference, Istanbul, 2013. Istanbul: Lulu.com; 2016. p. 110–7.

  • Jensen P, Pedersen NB. Examination of D-mannitol as an impregnation agent for heavily degraded waterlogged archaeological wood. In: Grant T. Cook C. editors. Proceedings of the 12th ICOM-CC Group on wet organic archaeological materials conference, Istanbul, 2013. Istanbul: Lulu.com; 2016. p. 118–25.

  • Broda M, Spear MJ, Curling SF, Ormondroyd GA. The viscoelastic behaviour of waterlogged archaeological wood treated with methyltrimethoxysilane. Materials. 2021;14:5150.

    CAS 
    Article 

    Google Scholar
     

  • Majka J, Zborowska M, Fejfer M, Waliszewska B, Olek W. Dimensional stability and hygroscopic properties of PEG treated irregularly degraded waterlogged Scots pine wood. J Cult Herit. 2018;31:133–40.

    Article 

    Google Scholar
     

  • Vetter LD, den Bulcke JV, Acker JV. Impact of organosilicon treatments on the wood-water relationship of solid wood. Holzforschung. 2010;64:463–8.

    Article 

    Google Scholar
     

  • Broda M, Mazela B. Application of methyltrimethoxysilane to increase dimensional stability of waterlogged wood. J Cult Herit. 2017;25:149–56.

    Article 

    Google Scholar
     

  • Kilic M, Kilic AG. Kauramin tests for the Yenikapi shipwrecks. In: Grant T. Cook C. editors. Proceedings of the 12th ICOM-CC Group on wet organic archaeological materials conference, Istanbul, 2013. Istanbul: Lulu.com; 2016. p. 222–7.

  • Babiński L. Influence of pre-treatment on shrinkage of freeze-dried archaeological oak-wood. Acta Sci Pol Silv Colendar Rat Ind Lignar. 2007;6:89–99.


    Google Scholar
     

  • www.rgzm.de/kur.

  • Stelzner I. Zur Nassholzkonservierung Bestimmung prozessrelevanter Eigenschaften für die Gefriertrocknung. Stuttgart: Staatliche Akademie der Bildenden Künste; 2017. https://doi.org/10.11588/artdok.00005438. Accessed 12 Oct 2021.

    Book 

    Google Scholar
     

  • Wittköpper M, Muskalla W, Stephan B, Le Boedec-Moesgard A, Gebhadt S, Klonk S. In: The KUR (conservation and restauration) project – a comparison of different methods to preserve waterlogged wood. Proceedings of the 12th ICOM-CC Group on wet organic archaeological materials conference, Istanbul, 2013. Istanbul: Lulu.com; 2016. p. 134–43.

  • Cook C, Lafrance J, Li C. Preliminary assessment of a new PEG. In: Strætkvern, K. Williams. E. editors. Proceedings of th 11th ICOM-CC Group on wet organic archaeological materials conference, Greenville, 2010. Greenville: Lulu.com; 2010. p. 245–55.

  • Cretté SA, Näsänen L, González-Pereyra NG, Rennison B. Conservation and treatment monitoring of waterlogged archeological corks using supercritical CO2 and treatment monitoring using structured-light 3D scanning. J Supercrit Fluids. 2013;79:199–313.

    Article 
    CAS 

    Google Scholar
     

  • Schindelholz E, Blanchette RA, Held BW, Jurgens J, Cook D, Drews MJ, Hand S, Seifert B. An evaluation of supercritical drying and PEG/freeze drying of waterlogged archaeological wood. In: Straetkver K, Huisman DJ. editors. Proceedings of the 10th ICOM-CC Group on wet organic archaeological materials conference, Amsterdam, 2007. Amersfoort: Rijksdienst Voor Archeologie, Cultuurlandschap En Monumenten; 2009. p. 399–416.

  • De Jong J. Conservation techniques for old waterlogged wood from shipwrecks found in the Netherlands. Biodeterior Invest Tech. 1977;113:295–338.


    Google Scholar
     

  • Stelzner I. Transfer into praxis. Evaluation of consolidants for freeze-drying archaeological wood. In: Williams E, Hocker E. editors. Proceedings of th 13th ICOM-CC Group on wet organic archaeological materials conference, Florence, 2016. Florence: Lulu.com; 2018. p. 325–32.

  • Van Damme T, Auer J, Ditta M, Grabowski M, Couwenberg M. The 3D annotated scans method: a new approach to ship timber recording. Herit Sci. 2020;8:1–18.

    Article 

    Google Scholar
     

  • Braovac S, McQueen CMA, Sahlstedt M, Kutzke H, Łucejko JJ, Klokkernes T. Navigating conservation strategies: linking material research on alum-treated wood from the Oseberg collection to conservation decisions. Herit Sci. 2018;6:1–16.

    Article 

    Google Scholar
     

  • Kowalczuk J, Rachocki A, Broda M, Mazela B, Ormondroyd GA, Tritt-Goc J. Conservation process of archaeological waterlogged wood studied by spectroscopy and gradient NMR methods. Wood Sci Technol. 2019;53:1207–22.

    CAS 
    Article 

    Google Scholar
     

  • Bugani S, Modugno F, Łucejko JJ, Giachi G, Cagno S, Cloetens P, et al. Study on the impregnation of archaeological waterlogged wood with consolidation treatments using synchrotron radiation microtomography. Anal Bioanal Chem. 2009;395:1977–85.

    CAS 
    Article 

    Google Scholar
     

  • Rankin K, Hazell Z, Middleton A, Mavrogordato M. Micro-focus X-ray CT scanning of two rare wooden objects from the wreck of the London, and its application in heritage science and conservation. J Archaeol Sci. 2021;39:103158.


    Google Scholar
     

  • Wiesner I, Stelzner J, Million S, Kuhnt K, Bott K. The first wheels go round again. In: Grant T. Cook C. editors. Proceedings of the 12th ICOM-CC group on wet organic archaeological materials conference, Istanbul, 2013. Istanbul: Lulu.com; 2016. p. 197–8.

  • Unger A, Planitzer J, Morgós A. Röntgencomputer- und Magnetresonanztomographie zur Charakterisierung von archäologischem Naßholz. Holztechnologie. 1988;29:249–50.


    Google Scholar
     

  • Demoulin T, Gebhard R, Schillinger B. Neutron tomography of archaeological waterlogged wood. Restaur Archäol. 2015;7:27–33.


    Google Scholar
     

  • Christensen M, Hansen FK, Kutzke H. Phenol formaldehyde revisited-novolac resins for the treatment of degraded archaeological wood: novolac resins for treatment of degraded archaeological wood. Archaeometry. 2015;57:536–59.

    CAS 
    Article 

    Google Scholar
     

  • Stelzner I, Stelzner J, Martinez-Garcia J, Gwerder D, Wittkoepper M, Muskalla W, Egg M. Schuetz P. Non-destructive assessment of conserved archaeological wood using computed tomography. In: Bridgland J, editor. Transcending boundaries: integrated approaches to conservation. ICOM-CC 19th Triennial Conference preprints, Beijing, 2021. Paris: ICOM-CC; 2021; p. 1–11.

  • Wittköpper M. Der aktuelle Stand der Konservierung archäologischer Naßhölzer mit Melamin/Aminoharzen am Römisch-Germanischen Zentralmuseum. Arbeitsblätter für Restauratoren. 1998;29:227–83.


    Google Scholar
     

  • Imazu S, Morgós A. An improvement on the Lactitol MC conservation method used for the conservation of archaeological waterlogged wood (The conservation method using Lactitol MC and Trehalose mixture). In: Hoffmann P, Spriggs JA, Grant T, Cook C, Recht A, editors. Proceedings of the 8th ICOM-CC Group on wet organic archaeological materials conference, Stockholm, 2001. Bremerhaven: ICOM-CC; 2002. p. 413–28.

  • Smith CW. Archaeological conservation using polymers: practical applications for organic artifact stabilization. College Station: Texas A&M University Press; 2003.


    Google Scholar
     

  • Jensen P, Petersen AH, Straetkvern K. From the Skuldelev to the Roskilde ships—50 years of shipwreck conservation at the National Musem of Denmark. In: Ek M, editor. Shipwrecks 2011 proceedings, chemistry and preservation of waterlogged wooden shipwrecks, Stockholm, 2011. Stockholm: Royal Institute of Technology; 2011. p. 14–20.


    Google Scholar
     

  • Cook C, Grattan D. A method of calculation the concentration of PEG for freeze-drying waterlogged wood. In: Hoffmann P, editor. Proceedings of the 4th ICOM-CC Group on wet organic archaeological materials conference, Bremerhaven, 1987. Bremerhaven: ICOM-CC; 1990. p. 239–52.

  • Kellogg RM, Sastry CBR, Wellwood RW. Relationships between cell-wall composition and cell-wall density. Wood Fiber Sci. 1975;7:170–7.


    Google Scholar
     

  • Macchioni N, Pizzo B, Capretti C, Giachi G. How an integrated diagnostic approach can help in a correct evaluation of the state of preservation of waterlogged archaeological wooden artefacts. J Archaeol Sci. 2012;39:3255–63.

    CAS 
    Article 

    Google Scholar
     

  • Macchioni N, Pecoraro E, Pizzo B. The measurement of maximum water content (MWC) on waterlogged archaeological wood: a comparison between three different methodologies. J Cult Herit. 2018;30:51–6.

    Article 

    Google Scholar
     

  • Brather S. Zur Anwendung von Dichteangaben bei der Bestimmung der PEG-Tränkkonzentration mit dem PEGcon-Computerprogramm. Restaur Archäol. 2009;2:91–7.


    Google Scholar
     

  • Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1:612–9.

    Article 

    Google Scholar
     

  • Stelzner J, Million S. X-ray Computed Tomography for the anatomical and dendrochronological analysis of archaeological wood. J Archaeol Sci. 2015;55:188–96.

    Article 

    Google Scholar
     

  • Stamm AJ, Tarkow H. Dimensional Stabilisation of Wood. J Phys Colloid Chem. 1947;51:493–505.

    CAS 
    Article 

    Google Scholar
     

  • Stamm AJ, Burr HK, Kline AL. Heat-stabilized Wood (staybwood). Madison: Forest Products Laboratory; 1955.


    Google Scholar
     

  • Stamm AJ. Effect of Polyethylene Glycol on the Dimensional Stability of Wood. For Prod J. 1959;9:375–81.

    CAS 

    Google Scholar
     

  • Rowell RM, Youngs RL. Dimensional stabilization of wood in use. Madison: Forest Products Laboratory; 1981.

    Book 

    Google Scholar
     

  • Håfors B. The role of the wasa in the development of the polyethylene glycol preservation method. In: Rowell RM, Barbour J, editors. Archaeological wood; properties, chemistry and preservation. Washington, DC: American Chemical Society; 1990. p. 195–233.


    Google Scholar
     

  • Wadell H. Volume, shape and roundness of quartz particles. J Geol. 1935;43:250–80.

    Article 

    Google Scholar
     

  • de Jong J. The conservation of shipwrecks. In: ICOM-CC, editor. Preprints of the ICOM-CC 5th triennial meeting, Zagreb, 1978. Paris: ICOM-CC; 1978. p. 78/7/1–10.

  • de Jong J. The conservation of waterlogged timber at Ketelhaven (Holland). In: ICOM-CC, editor. Preprints of the ICOM-CC 5th triennial meeting, Venice, 1975. Paris: ICOM-CC; 1975. p. 75/8/1–9.

  • Mühlethaler B. Conservation of waterlogged wood and wet leather. Paris: Eyrolles; 1973.


    Google Scholar
     

  • Jensen P, Jørgensen G, Schnell U. Dynamic LV-SEM analyses of freeze drying processes for waterlogged wood. In: Hoffmann P, Grant T, Spriggs JA, Cook C, Recht A, editors. Proceedings of the 8th ICOM-CC Group on wet organic archaeological materials conference, Stockholm, 2001. Bremerhaven: ICOM-CC; 2002. p. 319–33.

  • Hoffmann P. On the long-term visco-elastic behaviour of polyethylene glycol (PEG) impregnated archaeological oak wood. Holzforschung. 2010;64:725–8.

    CAS 
    Article 

    Google Scholar
     

  • Mietke H, Martin D. Sugar preservation of the Friesland ship. Chemical and microbiological investigations and insights. In: Bonnot-Diconne C, Hiron X, Khoi Tran Q, Hoffmann P, editors. Proceedings of the 7th ICOM-CC Group on wet organic archaeological materials conference, Grenoble, 1998. Grenoble: ICOM-CC; 1999. p. 204–9.

  • Schiweck H. Zucker/Saccharose, Seine anwendungstechnisch relevanten Eigenschaften bei der Nassholzkonservierung. Arbeitsblätter für Restauratoren. 1998;31:241–6.


    Google Scholar
     

  • Spinella A, Chillura Martino DF, Saladino ML, et al. Solid state NMR investigation of the roman Acqualadroni rostrum: tenth year assessment of the consolidation treatment of the wooden part. Cellulose. 2021;28:1025–38.

    CAS 
    Article 

    Google Scholar
     

  • Cole-Hamilton DI, Kaye B, Chudek IA, Hunter G. Nuclear magnetic resonance imaging of waterlogged wood. Stud Conserv. 1995;40:41–50.


    Google Scholar
     

  • Mori M, Kuhara S, Kobayashi K, Suzuki S, Yamada M, Senoo A. Non-destructive tree-ring measurements using a clinical 3T-MRI for archaeology. Dendrochronologia. 2019;57:125630.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)