• World Health Organization (WHO). World Malaria Report 2020 Medicines for Malaria Venture. 2020.


    Google Scholar
     

  • White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383:723–35.

    PubMed 
    Article 

    Google Scholar
     

  • Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res. 2019;118:1–27.

    PubMed 
    Article 

    Google Scholar
     

  • Trampuz A, Jereb M, Muzlovic I, Prabhu RM. Clinical review: severe malaria. Crit Care. 2003;7:1–9.

    Article 

    Google Scholar
     

  • Kremsner PG, Krishna S. Antimalarial combinations. Lancet. 2004;364:285–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Payne D. Spread of chloroquine resistance in plasmodium falciparum. Parasitol Today. 1987;3:241–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taylor WR, White NJ. Antimalarial drug toxicity. Drug Saf. 2004;27:25–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2:303–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Willcox M, Benoit-Vical F, Fowler D, Bourdy G, Burford G, Giani S, et al. Do ethnobotanical and laboratory data predict clinical safety and efficacy of anti-malarial plants? Malar J. 2011;10:1–9.

    Article 

    Google Scholar
     

  • Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J. 2011;10:1–2.

    Article 

    Google Scholar
     

  • Wink M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules. 2012;17:12771–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • World Health Organization (WHO). 2021. Who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk. https://www.who.int/news/item/06-10-2021. Accessed 24 Feb 2022.

  • Mostafa N, Singab A. Prospective of herbal medicine in Egypt. Med Chem (Los Angeles). 2018;8:116–7.

    Article 

    Google Scholar
     

  • Hout S, Chea A, Bun SS, Elias R, Gasquet M, Timon-David P, et al. Screening of selected indigenous plants of Cambodia for antiplasmodial activity. J Ethnopharmacol. 2006;107:12–8.

    PubMed 
    Article 

    Google Scholar
     

  • Bagavan A, Rahuman AA, Kaushik NK, Sahal D. In vitro antimalarial activity of medicinal plant extracts against plasmodium falciparum. Parasitol Res. 2011;108:15–22.

    PubMed 
    Article 

    Google Scholar
     

  • Rufin Marie TK, Mbetyoumoun Mfouapon H, Madiesse Kemgne EA, Jiatsa Mbouna CD, Tsouh Fokou PV, Sahal D, et al. Anti-plasmodium falciparum activity of extracts from 10 Cameroonian medicinal plants. Medicines. 2018;5:115.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kwansa-Bentum B, Agyeman K, Larbi-Akor J, Anyigba C, Appiah-Opong R. In Vitro Assessment of Antiplasmodial Activity and Cytotoxicity of Polyalthia longifolia Leaf Extracts on Plasmodium falciparum Strain NF54, Malaria Research and Treatment. 2019;2019:9. Article ID 6976298. https://doi.org/10.1155/2019/6976298.

  • Shittu I, Emmanuel A, Nok AJ. Antimalaria Effect of the Ethanolic Stem Bark Extracts of Ficus platyphylla Del. J Parasitology Res. 2011;2011:5. Article ID 618209. https://doi.org/10.1155/2011/618209

  • Tepongning RN, Yerbanga SR, Dori GU, Lucantoni L, Lupidi G, Habluetzel A. In vivo efficacy and toxicity studies on Erythrina senegalensis and Khaya ivorensis used as herbal remedies for malaria prevention in Cameroon. Eur J Med Plants. 2013;3:454–64.

    Article 

    Google Scholar
     

  • Chandel S, Bagai U, Vashishat N. Antiplasmodial activity of Xanthium strumarium against plasmodium berghei-infected BALB/c mice. Parasitol Res. 2012;110:1179–83.

    PubMed 
    Article 

    Google Scholar
     

  • Chutoam P, Klongthalay S, Somsak V. Effect of crude leaf extract of Bauhinia strychnifolia in BALB/c mice infected with plasmodium berghei. Malar Cont Elimination. 2015;4:S1–002.


    Google Scholar
     

  • Mohd Ridzuan MAR, Sow A, Noor Rain A, Mohd Ilham A, Zakiah I. Eurycoma longifolia extract-artemisinin combination: parasitemia suppression of plasmodium yoelii-infected mice. Trop Biomed. 2007;24:111–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Ishih A, Miyase T, Ohori K, Terada M. Different responses of three rodent plasmodia species, plasmodium yoelii 17XL, P. berghei NK65 and P. chabaudi AS on treatment with febrifugine and isofebrifugine mixture from Hydrangea macrophylla var. Otaksa leaf in ICR mice. Phytother Res. 2003;17:650–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boulos L. Flora of Egypt, Volume 1: Azollaceae – Oxalidaceae. Cairo, Egypt: Al Hadara Publishing; 1999. p. 419.


    Google Scholar
     

  • Boulos L. Flora of Egypt, volume 2: Geraniaceae–Boraginaceae. Cairo, Egypt: Al Hadara Publishing; 1999. p. 352.


    Google Scholar
     

  • Boulos L. Flora of Egypt, volume 3: Verbenaceae-Compositae. Cairo, Egypt: Al Hadara Publishing; 2002. p. 373.


    Google Scholar
     

  • Boulos L. Flora of Egypt checklist – revised Annotated Edition. Cairo, Egypt: Al Hadara Publishing; 2009. p. 410.


    Google Scholar
     

  • POWO. Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew. 2019. Available from: http://www.plantsoftheworldonline.org/. Accessed June 2021.

  • Leesombun A, Boonmasawai S, Nishikawa Y. Ethanol extracts from Thai plants have anti-plasmodium and anti-toxoplasma activities in vitro. Acta Parasitol. 2019;64:257–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pagmadulam B, Tserendulam D, Rentsenkhand T, Igarashi M, Sawa R, Nihei CI, et al. Isolation and characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils. Parasitol Int. 2020;74:101961.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leesombun A, Iijima M, Pagmadulam B, Orkhon B, Doi H, Issiki K, et al. Metacytofilin has potent anti-malarial activity. Parasitol Int. 2021;81:102267.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemother. 2007;51:1926–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ariefta NR, Koseki T, Nishikawa Y, Shiono Y. Spirocollequins a and B, new alkaloids featuring a spirocyclic isoindolinone core, from Colletotrichum boninense AM-12-2. Tetrahedron Lett. 2021;64:152736.

    CAS 
    Article 

    Google Scholar
     

  • Rasoanaivo P, Deharo E, Ratsimanga-Urverg S, Frappier F. Guidelines for the Non-clinical Evaluation of the Efficacy of Traditional Antimalarials. In: Willcox M, Rasoanaivo P, Bodeker G, editors. Traditional medicine plants and malaria. London: CRC Press LLC Boca Raton; 2004. p. 255–70.


    Google Scholar
     

  • Kweyamba PA, Zofou D, Efange N, Assob JC, Kitau J, Nyindo M. In vitro and in vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania. Malar J. 2019;18:119.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peters W. The four-day suppressive in vivo antimalarial test. Ann Trop Med Parasitol. 1975;69:155–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jaradat NA, Zaid AN, Abuzant A, Shawahna R. Investigation the efficiency of various methods of volatile oil extraction from Trichodesma africanum and their impact on the antioxidant and antimicrobial activities. J Intercult Ethnopharmacol. 2016;5:250–6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • El-Moaty, A. Active Constituents and antimicrobial activity of Trichodesma africanum (L.) R. Br. var. heterotrichum Bornm. & Kneuck. Egyptian J Agricultural Sciences. 2009;60(4):357-65.

  • Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, et al. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother. 2006;50:1352–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abdel-Sattar E, Maes L, Salama MM. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytother Res. 2010;24:1322–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Batanouny KH, Aboutabl E, Shabana M, Soliman F. Wild medicinal plants in Egypt. Cairo: The Palm press; 1999.


    Google Scholar
     

  • Kamel WM, Abd El-Ghani MM, El-Bous M. Cleomaceae as a distinct family in the flora of Egypt. Afr J Plant Sci Biotechnol. 2010;4:11–6.


    Google Scholar
     

  • Aparadh VT, Mahamuni RJ, Karadge BA. Taxonomy and physiological studies in spider flower (Cleome species): a critical review. Plant Sci Feed. 2012;2:25–46.


    Google Scholar
     

  • Rahman MA, Mossa JS, Al-Said MS, Al-Yahya MA. Medicinal plant diversity in the flora of Saudi Arabia 1: a report on seven plant families. Fitoterapia. 2004;75:149–61.

    PubMed 
    Article 

    Google Scholar
     

  • Moustafa A, Sarah R, Qiqa S, Mansour S, Alotaibi M. Cleome droserifolia: An Egyptian natural heritage facing extinction. Asian J Plant Sci Res. 2019;9:14–21.

    CAS 

    Google Scholar
     

  • Sarhan WA, Azzazy HM, El-Sherbiny IM. Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces. 2016;8:6379–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • El-Ghazali GE, Al-Khalifa KS, Saleem GA, Abdallah EM. Traditional medicinal plants indigenous to Al-Rass province, Saudi Arabia. J Med Plant Res. 2010;4:2680–3.

    Article 

    Google Scholar
     

  • Abd El-Gawad AM, El-Amier YA, Bonanomi G. Essential oil composition, antioxidant and allelopathic activities of Cleome droserifolia (Forssk). Delile Chem Biodiversity. 2018;15:e1800392.

    Article 
    CAS 

    Google Scholar
     

  • Panicker NG, Balhamar SO, Akhlaq S, Qureshi MM, Rehman NU, Al-Harrasi A, et al. Organic extracts from Cleome droserifolia exhibit effective caspase-dependent anticancer activity. BMC Complement Med Ther. 2020;20:1–3.

    Article 

    Google Scholar
     

  • Aboushoer MI, Fathy HM, Abdel-Kader MS, Goetz G, Omar AA. Terpenes and flavonoids from an Egyptian collection of Cleome droserifolia. Nat Prod Res. 2010;24:687–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hussain J, Khan H, Ali L, Latif Khan A, Ur Rehman N, Jahangir S, et al. A new indole alkaloid from cleome droserifolia. Helv Chim Acta. 2015;98:719–23.

    CAS 
    Article 

    Google Scholar
     

  • Abdullah W, Elsayed WM, Abdelshafeek KA, Nazif NM, Singab AN. Chemical constituents and biological activities of Cleome genus: a brief review. Int J Pharmacogn Phytochem Res. 2016;8:777–87.


    Google Scholar
     

  • Singh H, Mishra A, Mishra AK. The chemistry and pharmacology of Cleome genus: a review. Biomed. 2018;101:37–48.

    CAS 

    Google Scholar
     

  • Muhaidat R, Al-Qudah MA, Samir O, Jacob JH, Hussein E, Al-Tarawneh IN, et al. Phytochemical investigation and in vitro antibacterial activity of essential oils from Cleome droserifolia (Forssk.) Delile and C. trinervia Fresen. (Cleomaceae). S Afr J Bot. 2015;99:21–8.

    CAS 
    Article 

    Google Scholar
     

  • Bose A, Smith PJ, Lategan CA, Gupta JK, Si S. Studies on in vitro antiplasmodial activity of Cleome rutidosperma. Acta Pol Pharm Drug Res. 2010;67:315–8.


    Google Scholar
     

  • Ibrahim AA, Aref IM. Host status of thirteen Acacia species to Meloidogyne javanica. J Nematol. 2000;32:609.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav P, Kant R, Kothiyal P. A review on Acacia tortilis. Int J Pharm Phytopharm Res. 2013;3:93–6.


    Google Scholar
     

  • Kigondu EV, Rukunga GM, Keriko JM, Tonui WK, Gathirwa JW, Kirira PG, et al. Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya. J Ethnopharmacol. 2009;123:504–9.

    PubMed 
    Article 

    Google Scholar
     

  • Nguta JM, Mbaria JM. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. J Ethnopharmacol. 2013;148:988–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hussain A, Hayat MQ, Sahreen S, Ain QU, Bokhari SA. Pharmacological promises of genus Artemisia (Asteraceae): a review. Proc Pakistan Acad Sci: B Life Environ Sci. 2017;54:265–87.


    Google Scholar
     

  • Wyk BEV, Wink M. Medicinal plants of the world: An illustrated scientific guide to important medicinal plants and their uses. Pretoria, South Africa: CABI, Briza Publications; 2004.


    Google Scholar
     

  • Panda S, Rout JR, Pati P, Ranjit M, Sahoo SL. Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum. J Parasit Dis. 2018;42:22–27.

    PubMed 
    Article 

    Google Scholar
     

  • Ene AC, Atawodi SE, Ameh DA, Ndukwe GI, Kwanashie HO. Bioassay-guided fractionation and in vivo antiplasmodial effect of fractions of chloroform extract of Artemisia maciverae Linn. Acta Trop. 2009;112:288–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Valecha NE, Biswas S, Badoni V, Bhandari KS, Sati OP. Antimalarial activity of Artemisia japonica, Artemisia maritima and Artemisia nilegarica. Indian J Pharm. 1994;26:144.


    Google Scholar
     

  • Mojarrab M, Naderi R, Afshar FH. Screening of different extracts from Artemisia species for their potential antimalarial activity. Iran J Pharm Sci. 2015;14:603.


    Google Scholar
     

  • Covello PS. Making artemisinin. Phytochemistry. 2008;69:2881–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qian GP, Yang YW, Ren QL. Determination of artemisinin in Artemisia annua L. by reversed phase HPLC. J Liq Chromatogr Relat Technol. 2005;28:705–12.

    CAS 
    Article 

    Google Scholar
     

  • Numonov S, Sharopov F, Salimov A, Sukhrobov P, Atolikshoeva S, Safarzoda R, et al. Assessment of artemisinin contents in selected Artemisia species from Tajikistan (Central Asia). Medicines. 2019;6:23.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rashmi TR, Francis MS, Murali S. Determination of Artemisinin in selected Artemisia L. species by HPLC. Indo Am J Pharm. 2014;4:2637–44.


    Google Scholar
     

  • Arab HA, Rahbari S, Rassouli A, Moslemi MH, Khosravirad F. Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extract in broiler chickens. Trop Anim Health Prod. 2006;38:497–503.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zia M, Mannan A, Chaudhary MF. Effect of growth regulators and amino acids on artemisinin production in the callus of Artemisia absinthium. Pak J Bot (Pakistan). 2007;39:799–805.


    Google Scholar
     

  • Mannan A, Shaheen N, Arshad W, Qureshi RA, Zia M, Mirza B. Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica. Afr J Biotechnol. 2008;7(18):3288-92. 17 September, 2008. Available online at http://www.academicjournals.org/AJB. ISSN 1684–5315 © 2008 Academic Journals.

  • Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin Resistance in Plasmodium falciparum Malaria. N Engl J Med. 2009;361:455–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kodippili K, Daya Ratnasooriya W, Premakumara S, Udagama PV. An investigation of the antimalarial activity of Artemisia vulgaris leaf extract in a rodent malaria model. Int J Green Pharm. 2011;5(4). https://hdl.handle.net/70130/5248/. P-ISSN0973-8258 E-ISSN – 1998-4103.

  • Bamunuarachchi GS, Ratnasooriya WD, Premakumara S, Udagama PV. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a plasmodium berghei murine malaria model. J Vector Borne Dis. 2013;50:278–84.

    PubMed 

    Google Scholar
     

  • Nahrevanian H, Sheykhkanlooye Milan B, Kazemi M, Hajhosseini R, Soleymani Mashhadi S, Nahrevanian S. Antimalarial effects of Iranian flora Artemisia sieberi on Plasmodium berghei in vivo in mice and phytochemistry analysis of its herbal extracts. Malaria research and treatment. Hindawi Publishing Corporation Malaria Research and Treatment. 2012;2012:8. https://doi.org/10.1155/2012/727032. Article ID 727032.

  • Atemnkeng MA, Chimanuka B, Dejaegher B, Vander Heyden Y, Plaizier-Vercammen J. Evaluation of Artemisia annua infusion efficacy for the treatment of malaria in plasmodium chabaudi chabaudi infected mice. Exp Parasitol. 2009;122:344–8.

    PubMed 
    Article 

    Google Scholar
     

  • Elfawal MA, Towler MJ, Reich NG, Golenbock D, Weathers PJ, Rich SM. Dried whole plant Artemisia annua as an antimalarial therapy. PLoS One. 2012;7:e52746.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meena AK, Yadav AK, Niranjan US, Singh B, Nagariya AK, Sharma K, et al. A review on Calotropis procera Linn and its ethnobotany, phytochemical, pharmacological profile. Drug Invent Today. 2010;2:185–90.


    Google Scholar
     

  • Sharma P, Sharma JD. In-vitro schizonticidal screening of Calotropis procera. Fitoterapia. 2000;71:77–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mudi SY, Bukar A. Anti-plasmodia activity of leaf extracts of Calotropis procera Linn. Biokemistri. 2011;23(1). Available online at https://www.bioline.org.br/bk.

  • Huang BW, Pearman E, Kim CC. Mouse models of uncomplicated and fatal malaria. Bio Protoc. 2015;5(13):e1514. https://doi.org/10.21769/bioprotoc.1514.

  • Ajala TO, Igwilo CI, Oreagba IA, Odeku OA. The antiplasmodial effect of the extracts and formulated capsules of Phyllanthus amarus on plasmodium yoelii infection in mice. Asian Pac J Trop. 2011;4:283–7.

    Article 

    Google Scholar
     

  • Okeola VO, Adaramoye OA, Nneji CM, Falade CO, Farombi EO, Ademowo OG. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with plasmodium yoelli nigeriensis. Parasitol. 2011;108:1507–12.

    Article 

    Google Scholar
     

  • Prakash A, Sharma SK, Mohapatra PK, Bhattacharjee K, Gogoi K, Gogoi P, et al. In vitro and in vivo antiplasmodial activity of the root extracts of Brucea mollis wall. Ex Kurz. Parasitol Res. 2013;112:637–4.

    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)