• Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258–70.

    Article 

    Google Scholar
     

  • Room R, Babor T, Rehm J. Alcohol and public health. Lancet. 2005;365(9458):519–30.

    Article 

    Google Scholar
     

  • Wood AM, Kaptoge S, Butterworth AS, Willeit P, Warnakula S, Bolton T, et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet. 2018;391(10129):1513–23.

    Article 

    Google Scholar
     

  • Gmel G, Gutjahr E, Rehm J. How stable is the risk curve between alcohol and all-cause mortality and what factors influence the shape? A precision-weighted hierarchical meta-analysis. Eur J Epidemiol. 2003;18(7):631–42.

    Article 

    Google Scholar
     

  • Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, de Gaetano G. Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies. Arch Intern Med. 2006;166(22):2437–45.

    Article 

    Google Scholar
     

  • Wang C, Xue H, Wang Q, Hao Y, Li D, Gu D, et al. Effect of drinking on all-cause mortality in women compared with men: a meta-analysis. J Womens Health (Larchmt). 2014;23(5):373–81.

    Article 

    Google Scholar
     

  • Stockwell T, Zhao J, Panwar S, Roemer A, Naimi T, Chikritzhs T. Do, “moderate” drinkers have reduced mortality risk? A systematic review and meta-analysis of alcohol consumption and all-cause mortality. J Stud Alcohol Drugs. 2016;77(2):185–98.

    Article 

    Google Scholar
     

  • Brien SE, Ronksley PE, Turner BJ, Mukamal KJ, Ghali WA. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;342: d636.

    Article 

    Google Scholar
     

  • Vu KN, Ballantyne CM, Hoogeveen RC, Nambi V, Volcik KA, Boerwinkle E, et al. Causal Role of Alcohol Consumption in an Improved Lipid Profile: The Atherosclerosis Risk in Communities (ARIC) Study. PLoS ONE. 2016;11(2):e0148765.

    Article 

    Google Scholar
     

  • Schaeffner ES, Kurth T, de Jong PE, Glynn RJ, Buring JE, Gaziano JM. Alcohol consumption and the risk of renal dysfunction in apparently healthy men. Arch Intern Med. 2005;165(9):1048–53.

    Article 

    Google Scholar
     

  • White SL, Polkinghorne KR, Cass A, Shaw JE, Atkins RC, Chadban SJ. Alcohol consumption and 5-year onset of chronic kidney disease: the AusDiab study. Nephrol Dial Transplant. 2009;24(8):2464–72.

    Article 

    Google Scholar
     

  • Koning SH, Gansevoort RT, Mukamal KJ, Rimm EB, Bakker SJ, Joosten MM, et al. Alcohol consumption is inversely associated with the risk of developing chronic kidney disease. Kidney Int. 2015;87(5):1009–16.

    CAS 
    Article 

    Google Scholar
     

  • Hsu YH, Pai HC, Chang YM, Liu WH, Hsu CC. Alcohol consumption is inversely associated with stage 3 chronic kidney disease in middle-aged Taiwanese men. BMC Nephrol. 2013;14:254.

    Article 

    Google Scholar
     

  • Shankar A, Klein R, Klein BE. The association among smoking, heavy drinking, and chronic kidney disease. Am J Epidemiol. 2006;164(3):263–71.

    Article 

    Google Scholar
     

  • Buja A, Scafato E, Baggio B, Sergi G, Maggi S, Rausa G, et al. Renal impairment and moderate alcohol consumption in the elderly. Results from the Italian Longitudinal Study on Aging (ILSA). Public Health Nutr. 2011;14(11):1907–18.

    Article 

    Google Scholar
     

  • Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W, Brabec BA, O’Corragain OA, Edmonds PJ, et al. High alcohol consumption and the risk of renal damage: a systematic review and meta-analysis. QJM. 2015;108(7):539–48.

    CAS 
    Article 

    Google Scholar
     

  • Kimura Y, Yamamoto R, Shinzawa M, Isaka Y, Iseki K, Yamagata K, et al. Alcohol consumption and incidence of proteinuria: a retrospective cohort study. Clin Exp Nephrol. 2018;22(5):1133–42.

    Article 

    Google Scholar
     

  • Sato KK, Hayashi T, Uehara S, Kinuhata S, Oue K, Endo G, et al. Drinking pattern and risk of chronic kidney disease: the kansai healthcare study. Am J Nephrol. 2014;40(6):516–22.

    CAS 
    Article 

    Google Scholar
     

  • Fuselli S, De Felice M, Morlino R, Turrio-Baldassarri L. A three year study on 14 VOCs at one site in Rome: levels, seasonal variations, indoor/outdoor ratio and temporal trends. Int J Environ Res Public Health. 2010;7(10):3792–803.

    CAS 
    Article 

    Google Scholar
     

  • Menon V, Katz R, Mukamal K, Kestenbaum B, de Boer IH, Siscovick DS, et al. Alcohol consumption and kidney function decline in the elderly: alcohol and kidney disease. Nephrol Dial Transplant. 2010;25(10):3301–7.

    CAS 
    Article 

    Google Scholar
     

  • Reynolds K, Gu D, Chen J, Tang X, Yau CL, Yu L, et al. Alcohol consumption and the risk of end-stage renal disease among Chinese men. Kidney Int. 2008;73(7):870–6.

    CAS 
    Article 

    Google Scholar
     

  • Park M, Lee SM, Yoon HJ. Association between alcohol intake and measures of incident CKD: an analysis of nationwide health screening data. PLoS ONE. 2019;14(9):e0222123.

    CAS 
    Article 

    Google Scholar
     

  • Yamagata K, Ishida K, Sairenchi T, Takahashi H, Ohba S, Shiigai T, et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 2007;71(2):159–66.

    CAS 
    Article 

    Google Scholar
     

  • Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92.

    CAS 
    Article 

    Google Scholar
     

  • Murakami K, Hashimoto H. Associations of education and income with heavy drinking and problem drinking among men: evidence from a population-based study in Japan. BMC Public Health. 2019;19(1):420.

    Article 

    Google Scholar
     

  • Inoue M, Nagata C, Tsuji I, Sugawara Y, Wakai K, Tamakoshi A, et al. Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan Impact of alcohol intake on total mortality and mortality from major causes in Japan: a pooled analysis of six large-scale cohort studies. J Epidemiol Community Health. 2012;66(5):448–56.

    Article 

    Google Scholar
     

  • Levin A, Stevens PE. Summary of KDIGO 2012 CKD guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 2014;85(1):49–61.

    Article 

    Google Scholar
     

  • Geng TT, Jafar TH, Yuan JM, Koh WP. The impact of diabetes on the association between alcohol intake and the risk of end-stage kidney disease in the Singapore Chinese Health Study. J Diabetes. 2020;12(8):583–93.

    Article 

    Google Scholar
     

  • Hu EA, Lazo M, Rosenberg SD, Grams ME, Steffen LM, Coresh J, et al. Alcohol Consumption and Incident Kidney Disease: Results From the Atherosclerosis Risk in Communities Study. J Ren Nutr. 2020;30(1):22–30.

    CAS 
    Article 

    Google Scholar
     

  • Kelly JT, Su G, Zhang L, Qin X, Marshall S, González-Ortiz A, et al. Modifiable lifestyle factors for primary prevention of CKD: a systematic review and meta-analysis. J Am Soc Nephrol. 2021;32(1):239–53.

    CAS 
    Article 

    Google Scholar
     

  • Uehara S, Hayashi T, Kogawa Sato K, Kinuhata S, Shibata M, Oue K, et al. Relationship between alcohol drinking pattern and risk of proteinuria: the Kansai healthcare study. J Epidemiol. 2016;26(9):464–70.

    Article 

    Google Scholar
     

  • Fan Z, Yun J, Yu S, Yang Q, Song L. Alcohol consumption can be a “double-edged sword” for chronic kidney disease patients. Med Sci Monit. 2019;25:7059–72.

    CAS 
    Article 

    Google Scholar
     

  • Samadi M, Shirpoor A, Afshari AT, Kheradmand F, Rasmi Y, Sadeghzadeh M. Chronic ethanol ingestion induces glomerular filtration barrier proteins genes expression alteration and increases matrix metalloproteinases activity in the kidney of rats. Interv Med Appl Sci. 2018;10(3):171–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Q, Hong S, Han S, Zeng L, Liu F, Ding G, et al. Preconditioning with physiological levels of ethanol protect kidney against ischemia/reperfusion injury by modulating oxidative stress. PLoS ONE. 2011;6(10):e25811.

    CAS 
    Article 

    Google Scholar
     

  • Briasoulis A, Agarwal V, Messerli FH. Alcohol consumption and the risk of hypertension in men and women: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2012;14(11):792–8.

    Article 

    Google Scholar
     

  • Ammon E, Schäfer C, Hofmann U, Klotz U. Disposition and first-pass metabolism of ethanol in humans: is it gastric or hepatic and does it depend on gender? Clin Pharmacol Ther. 1996;59(5):503–13.

    CAS 
    Article 

    Google Scholar
     

  • Bundy JD, Bazzano LA, Xie D, Cohan J, Dolata J, Fink JC, et al. Self-reported tobacco, alcohol, and illicit drug use and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2018;13(7):993–1001.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)