• Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35:565–72.

    PubMed 
    Article 

    Google Scholar
     

  • Credendino SC, Neumayer C, Cantone I. Genetics and epigenetics of sex bias: insights from human cancer and autoimmunity. Trends Genet. 2020;36:650–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hartman RJG, Huisman SE, den Ruijter HM. Sex differences in cardiovascular epigenetics—a systematic review. Biol Sex Differ. 2018;9:19. https://doi.org/10.1186/s13293-018-0180-z.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin X, Li J, Wu T, Wu Y, Tang X, Gao P, et al. Overall and sex-specific associations between methylation of the ABCG1 and APOE genes and ischemic stroke or other atherosclerosis-related traits in a sibling study of Chinese population. Clin Epigenetics. 2019;11:189. https://doi.org/10.1186/s13148-019-0784-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davegårdh C, Hall Wedin E, Broholm C, Henriksen TI, Pedersen M, Pedersen BK, et al. Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Res Ther. 2019;10:26. https://doi.org/10.1186/s13287-018-1118-4.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koo HK, Morrow J, Kachroo P, Tantisira K, Weiss ST, Hersh CP, et al. Sex-specific associations with DNA methylation in lung tissue demonstrate smoking interactions. Epigenetics. 2020. https://doi.org/10.1080/15592294.2020.1819662.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia Y, Dai R, Wang K, Jiao C, Zhang C, Xu Y, et al. Sex-differential DNA methylation and associated regulation networks in human brain implicated in the sex-biased risks of psychiatric disorders. Mol Psychiatry. 2021;26:835–48. https://doi.org/10.1038/s41380-019-0416-2.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, King JK, et al. A role for sex chromosome complement in the female bias in autoimmune disease. J Exp Med. 2008;205:1099–108.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wijchers PJ, Festenstein RJ. Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet. 2011;27:132–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Werner RJ, Schultz BM, Huhn JM, Jelinek J, Madzo J, Engel N. Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ. 2017;8:1–18.

    Article 
    CAS 

    Google Scholar
     

  • Link JC, Chen X, Arnold AP, Reue K. Metabolic impact of sex chromosomes. Adipocyte. 2013;2:74–9. https://doi.org/10.4161/adip.23320.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8:737–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rubtsova K, Marrack P, Rubtsov AV. Sexual dimorphism in autoimmunity. J Clin Investig. 2015;125:2187–93.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Andrews S, Yang IJ, Froehlich K, Oskotsky T, Sirota M. Large-scale placenta DNA methylation mega-analysis reveals fetal sex-specific differentially methylated CpG sites and regions. https://doi.org/10.1101/2021.03.04.433985

  • Lopes-Ramos CM, Chen C-Y, Kuijjer ML, Glass K, Quackenbush J, Demeo DL. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 2020. https://doi.org/10.1016/j.celrep.2020.107795.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sugathan A, Waxman DJ. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol. 2013;33:3594–610.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu J, Morgan M, Hutchison K, Calhoun VD. A study of the influence of sex on genome wide methylation. PLoS ONE. 2010;5:e10028.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Numata S, Ye T, Hyde TM, Guitart-Navarro X, Tao R, Wininger M, et al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet. 2012;90:260–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hall E, Volkov P, Dayeh T, Esguerra JL, Salö S, Eliasson L, et al. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol. 2014;15:522.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sun L, Lin J, Du H, Hu C, Huang Z, Lv Z, et al. Gender-specific DNA methylome analysis of a Han Chinese longevity population. Biomed Res Int. 2014;2014:1–9.


    Google Scholar
     

  • Yousefi P, Huen K, Davé V, Barcellos L, Eskenazi B, Holland N. Sex differences in DNA methylation assessed by 450 K BeadChip in newborns. 2011.

  • Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin. 2013;6:4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singmann P, Shem-Tov D, Wahl S, Grallert H, Fiorito G, Shin SY, et al. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin. 2015;8:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Inoshita M, Numata S, Tajima A, Kinoshita M, Umehara H, Yamamori H, et al. Sex differences of leukocytes DNA methylation adjusted for estimated cellular proportions. Biol Sex Differ. 2015;6:1–7.

    CAS 
    Article 

    Google Scholar
     

  • Martin E, Smeester L, Bommarito PA, Grace MR, Boggess K, Kuban K, et al. Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics. 2017;9:267–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Suderman M, Simpkin A, Sharp G, Gaunt T, Lyttleton O, McArdle W, et al. Sex-associated autosomal DNA methylation differences are wide-spread and stable throughout childhood. bioRxiv. 2017. http://europepmc.org/article/PPR/PPR32347

  • Inkster AM, Yuan V, Konwar C, Matthews AM, Brown CJ, Robinson WP. A cross-cohort analysis of autosomal DNA methylation sex differences in the term placenta. Biol Sex Differ. 2021;12(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Gatev E, Inkster AM, Negri GL, Konwar C, Lussier AA, Skakkebaek A, et al. Autosomal sex-associated co-methylated regions predict biological sex from DNA methylation. Nucleic Acids Res. 2021. https://doi.org/10.1093/nar/gkab682/6353815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Hannon E, Grant OA, Gorrie-Stone TJ, Kumari M, Mill J, et al. DNA methylation-based sex classifier to predict sex and identify sex chromosome aneuploidy. BMC Genom. 2021;22:1–11. https://doi.org/10.1186/s12864-021-07675-2.

    CAS 
    Article 

    Google Scholar
     

  • Wang Y, Gorrie-Stone TJ, Grant OA, Andrayas AD, Zhai X, McDonald-Maier KD, et al. interpolatedXY: a two-step strategy to normalise DNA methylation microarray data avoiding sex bias. bioRxiv. 2021. https://doi.org/10.1101/2021.09.30.462546v1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • G K. Understanding society—UK household longitudinal study: wave 1–5, User Manual. Colchester, United Kingdom. 2015.

  • Windley SP, Wilhelm D. Signaling pathways involved in mammalian sex determination and gonad development. Sex Dev. 2015;9:297–315.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nef S, Vassalli J-D. Complementary pathways in mammalian female sex determination. J Biol. 2009;8:1–3. https://doi.org/10.1186/jbiol173.

    CAS 
    Article 

    Google Scholar
     

  • Jiménez R, Burgos M, Barrionuevo FJ. Sex maintenance in mammals. Genes. 2021;12:999.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ottolenghi C, Pelosi E, Tran J, Colombino M, Douglass E, Nedorezov T, Cao A, Forabosco A, Schlessinger D. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet. 2007;16:2795–804.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rubin JB. The spectrum of sex differences in cancer. Trends Cancer. 2022. http://www.cell.com/article/S2405803322000206/fulltext.

  • Zhu C, Boutros PC. Sex differences in cancer genomes: much learned, more unknown. Endocrinology. 2021;162:bqab170.

    PubMed 
    Article 

    Google Scholar
     

  • Lopes-Ramos CM, Quackenbush J, DeMeo DL. Genome-wide sex and gender differences in cancer. Front Oncol. 2020;10:2486.

    Article 

    Google Scholar
     

  • Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, et al. Sex differences in cancer mechanisms. Biol Sex Differ. 2020;11:1–29.

    Article 
    CAS 

    Google Scholar
     

  • Lim S, Kierzek M, O’Connor AE, Brenker C, Merriner DJ, Okuda H, et al. CRISP2 is a regulator of multiple aspects of sperm function and male fertility. Endocrinology. 2019;160:915–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prior HM, Walter MA. Sox genes: architects of development. 1996.

  • Yusipov I, Bacalini MG, Kalyakulina A, Krivonosov M, Pirazzini C, Gensous N, Ravaioli F, Milazzo M, Giuliani C, Vedunova M, Fiorito G. Age-related DNA methylation changes are sex-specific: a comprehensive assessment. Aging. 2020;12:24057–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kochmanski J, Kuhn NC, Bernstein AI. Parkinson’s disease-associated, sex-specific changes in DNA methylation at PARK7 (DJ-1), ATXN1, SLC17A6, NR4A2, and PTPRN2 in cortical neurons. bioRxiv. 2021. https://doi.org/10.1101/2021.09.08.459434v1.

    Article 

    Google Scholar
     

  • Chathoth KT, Zabet NR. Chromatin architecture reorganization during neuronal cell differentiation in Drosophila genome. Genome Res. 2019;29:613–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR, Patwardhan TA, et al. Genome-wide enhancer maps link risk variants to disease genes. Nature. 2021;593:238–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xia X, Zhou X, Quan Y, Hu Y, Xing F, Li Z, et al. Germline deletion of Cdyl causes teratozoospermia and progressive infertility in male mice. Cell Death Dis. 2019;10:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Dimas AS, Nica AC, Montgomery SB, Stranger BE, Raj T, Buil A, et al. Sex-biased genetic effects on gene regulation in humans. Genome Res. 2012;22:2368–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Y, Zheng M, Lau YFC. The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Rep. 2014;8:723–33. https://doi.org/10.1016/j.celrep.2014.06.055.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Harley VR, Clarkson MJ, Argentaro A. The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) Box 9]. Endocr Rev. 2003;24:466–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu Q, Fukuda K, Kato Y, Zhou Z, Deng C-X, Saga Y. Sexual fate change of XX germ cells caused by the deletion of SMAD4 and STRA8 independent of somatic sex reprogramming. PLoS Biol. 2016;14:e1002553.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hernando-Herraez I, Evano B, Stubbs T, Commere P-H, Jan Bonder M, Clark S, et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat Commun. 2019;10:1–11.

    CAS 
    Article 

    Google Scholar
     

  • Sadler MC, Auwerx C, Porcu E, Kutalik Z. Quantifying mediation between omics layers and complex traits. bioRxiv. 2021. https://doi.org/10.1101/2021.09.29.462396v1.

    Article 

    Google Scholar
     

  • Rauluseviciute I, Drabløs F, Rye MB. DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC Med Genom. 2020;13:1–15. https://doi.org/10.1186/s12920-020-0657-6.

    CAS 
    Article 

    Google Scholar
     

  • Geybels MS, Zhao S, Wong CJ, Bibikova M, Klotzle B, Wu M, Ostrander EA, Fan JB, Feng Z, Stanford JL. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate. 2015;75:1941–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ford E, Grimmer MR, Stolzenburg S, Bogdanovic O, de Mendoza A, Farnham PJ, et al. Frequent lack of repressive capacity of promoter DNA methylation identified through genome-wide epigenomic manipulation. bioRxiv. 2017. https://doi.org/10.1101/170506v3.

    Article 

    Google Scholar
     

  • Bove RM, Patrick E, Aubin CM, Srivastava G, Schneider JA, Bennett DA, et al. Reproductive period and epigenetic modifications of the oxidative phosphorylation pathway in the human prefrontal cortex. PLoS ONE. 2018;13:e0199073.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VLJ, et al. A genetic cause of Alzheimer disease: mechanistic insights from down syndrome. Nat Rev Neurosci. 2015;16:564–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kasuga K, Shimohata T, Nishimura A, Shiga A, Mizuguchi T, Tokunaga J, et al. Identification of independent APP locus duplication in Japanese patients with early-onset Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80:1050–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Xu A, Jia S, Huang J. Recent advances in the molecular mechanism of sex disparity in hepatocellular carcinoma (review). Oncol Lett. 2019;17:4222–8. https://doi.org/10.3892/ol.2019.10127/abstract.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Somineni HK, Venkateswaran S, Kilaru V, Marigorta UM, Mo A, Okou DT, et al. Blood-derived DNA methylation signatures of Crohn’s disease and severity of intestinal inflammation. Gastroenterology. 2019;156:2254-2265.e3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ichijima Y, Ichijima M, Lou Z, Nussenzweig A, Daniel Camerini-Otero R, Chen J, et al. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes Dev. 2011;25:959–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sunny SK, Zhang H, Relton CL, Ring S, Kadalayil L, Mzayek F, et al. Sex-specific longitudinal association of DNA methylation with lung function. ERJ Open Res. 2021;7:00127–2021.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang L, Young JI, Gomez L, Silva TC, Schmidt MA, Cai J, et al. Sex-specific DNA methylation differences in Alzheimer’s disease pathology. Acta Neuropathol Commun. 2021;9:1–19. https://doi.org/10.1186/s40478-021-01177-8.

    CAS 
    Article 

    Google Scholar
     

  • Curtis SW, Gerkowicz SA, Cobb DO, Kilaru V, Terrell ML, Marder ME, et al. Sex-specific DNA methylation differences in people exposed to polybrominated biphenyl. Epigenomics. 2020;12:757–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koo H-K, Morrow J, Kachroo P, Tantisira K, Weiss ST, Hersh CP, et al. Sex-specific associations with DNA methylation in lung tissue demonstrate smoking interactions. Epigenetics. 2021;16:692.

    PubMed 
    Article 

    Google Scholar
     

  • Xu H, Wang F, Liu Y, Yu Y, Gelernter J, Zhang H. Sex-biased methylome and transcriptome in human prefrontal cortex. Hum Mol Genet. 2014;23:1260–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang FF, Cardarelli R, Carroll J, Fulda KG, Kaur M, Gonzalez K, et al. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics. 2011;6:623–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • García-Calzón S, Perfilyev A, de Mello VD, Pihlajamäki J, Ling C. Sex differences in the methylome and transcriptome of the human liver and circulating HDL-cholesterol levels. J Clin Endocrinol Metab. 2018;103:4395–408.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maschietto M, Bastos LC, Tahira AC, Bastos EP, Euclydes VLV, Brentani A, et al. Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases. Sci Rep. 2017;7:1–11.

    Article 
    CAS 

    Google Scholar
     

  • McCarthy NS, Melton PE, Cadby G, Yazar S, Franchina M, Moses EK, et al. Meta-analysis of human methylation data for evidence of sex-specific autosomal patterns. BMC Genom. 2014;15:981. https://doi.org/10.1186/1471-2164-15-981.

    CAS 
    Article 

    Google Scholar
     

  • Berkel S, Eltokhi A, Fröhlich H, Porras-Gonzalez D, Rafiullah R, Sprengel R, et al. Sex hormones regulate SHANK expression. Front Mol Neurosci. 2018;11:337.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mottron L, Duret P, Mueller S, Moore RD, Forgeot D’Arc B, Jacquemont S, et al. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism understanding the links between sex/gender and autism Dr Meng-Chuan Lai. Mol Autism. 2015. https://doi.org/10.1186/s13229-015-0024-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokomori N, Kobayashi R, Moore R, Sueyoshi T, Negishi M. A DNA methylation site in the male-specific P450 (Cyp 2d–9) promoter and binding of the heteromeric transcription factor GABP. Mol Cell Biol. 1995;15:5355–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu T, Mar JC. Investigating transcriptome-wide sex dimorphism by multi-level analysis of single-cell RNA sequencing data in ten mouse cell types. Biol Sex Differ. 2020;11:1–20.

    Article 
    CAS 

    Google Scholar
     

  • Perdomo-Sabogal A, Nowick K, Piccini I, Sudbrak R, Lehrach H, Yaspo M-L, et al. Human lineage-specific transcriptional regulation through GA-binding protein transcription factor alpha (GABPa). Mol Biol Evol. 2016;33:1231–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ahmed EA, van der Vaart A, Barten A, Kal HB, Chen J, Lou Z, Minter-Dykhouse K, Bartkova J, Bartek J, de Boer P, de Rooij DG. Differences in DNA double strand breaks repair in male germ cell types: lessons learned from a differential expression of Mdc1 and 53BP1. DNA Repair. 2017;6:1243–54.

    Article 
    CAS 

    Google Scholar
     

  • Perumal N, Funke S, Pfeiffer N, Grus FH. Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep. 2016;6:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Bergstedt J, Ait S, Azzou K, Tsuo K, Jaquaniello A, Urrutia A, et al. Factors driving DNA methylation variation in human blood. https://doi.org/10.1101/2021.06.23.449602.

  • Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17:1–17. https://doi.org/10.1186/s13059-016-1066-1.

    CAS 
    Article 

    Google Scholar
     

  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. 2012. www.nature.com/reviews/genetics.

  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2019;41:178–86.

    Article 
    CAS 

    Google Scholar
     

  • Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics. 2013;5:553–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab. 2000;11:142–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res Rev Mutat Res. 2008;659:40–8.

    Article 
    CAS 

    Google Scholar
     

  • Song Y, Liu T, Wang Y, Deng J, Chen M, Yuan L, et al. Mutation of the Sp1 binding site in the 5’ flanking region of SRY causes sex reversal in rabbits. Oncotarget. 2017;8:38176–83.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matthews BJ, Waxman DJ. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver. Epigenetics Chromatin. 2020;13:1–25. https://doi.org/10.1186/s13072-020-00350-y.

    CAS 
    Article 

    Google Scholar
     

  • Rocks D, Shukla M, Finnemann SC, Kalluchi A, Jordan Rowley M, Kundakovic M. Sex-specific multi-level 3D genome dynamics in the mouse brain. bioRxiv. 2021. https://doi.org/10.1101/2021.05.03.442383.

    Article 

    Google Scholar
     

  • Hughes A, Smart M, Gorrie-Stone T, Hannon E, Mill J, Bao Y, et al. Socioeconomic position and DNA methylation age acceleration across the life course. Am J Epidemiol. 2018;187:2346–54.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gorrie-Stone TJ, Smart MC, Saffari A, Malki K, Hannon E, Burrage J, et al. Bigmelon: tools for analysing large DNA methylation datasets. Bioinformatics. 2019;35:981–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genom. 2013;14:293.

    CAS 
    Article 

    Google Scholar
     

  • Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genom. 2013;14:1–10. https://doi.org/10.1186/1471-2164-14-293.

    CAS 
    Article 

    Google Scholar
     

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30:428–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van Iterson M, van Zwet EW, Heijmans BT. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol. 2017;18:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics (Oxford, England). 2016;32:286–8.

    CAS 
    Article 

    Google Scholar
     

  • Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stojnic R DD. PWMEnrich: PWM enrichment analysis. R package version 4260. 2020.

  • Shannon P, Richards M. MotifDb: an annotated collection of protein-DNA binding sequence motifs. R package version 1340. 2021.

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–8. https://doi.org/10.1016/j.cels.2016.07.002.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:1–7. https://doi.org/10.1186/1752-0509-8-S4-S11.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)