• Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang L, Tian L, Dai X, Yu H, Wang J, Lei A, Zhu M, Xu J, Zhao W, Zhu Y, Sun Z, Zhang H, Hu Y, Wang Y, Xu Y, Church GM, Huang H, Weng Q, Zhang J. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol. 2020;13(1):153.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C, Campos MM, Miyagishima KJ, McGaughey D, Villasmil R, Mattapallil M, Stanzel B, Qian H, Wong W, Chase L, Charles S, McGill T, Miller S, Maminishkis A, Amaral J, Bharti K. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11(475):eaat5580.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yin Z, Zhang Y, Wang X. Advances in chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma. Biomark Res. 2021;9(1):58.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang H, Zhao P, Huang H. Engineering better chimeric antigen receptor T cells. Exp Hematol Oncol. 2020;9(1):34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, Gao L, Wen Q, Zhong JF, Zhang C, Zhang X. Recent advances in CAR-T cell engineering. J Hematol Oncol. 2020;13(1):86.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nie Y, Lu W, Chen D, Tu H, Guo Z, Zhou X, Li M, Tu S, Li Y. Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies. Biomark Res. 2020;8(1):18.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lemoine J, Ruella M, Houot R. Born to survive: how cancer cells resist CAR T cell therapy. J Hematol Oncol. 2021;14(1):199.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hao Z, Li R, Meng L, Han Z, Hong Z. Macrophage, the potential key mediator in CAR-T related CRS. Exp Hematol Oncol. 2020;9(1):15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kasakovski D, Xu L, Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J Hematol Oncol. 2018;11(1):91.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guo R, Lü M, Cao F, Wu G, Gao F, Pang H, Li Y, Zhang Y, Xing H, Liang C, Lyu T, Du C, Li Y, Guo R, Xie X, Li W, Liu D, Song Y, Jiang Z. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res. 2021;9(1):15.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol. 2012;12(4):295–305.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Belkaid Y, Blank RB, Suffia I. Natural regulatory T cells and parasites: a common quest for host homeostasis. Immunol Rev. 2006;212(1):287–300.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu C, Saito F, Liu Z, Lei Y, Uehara S, Love P, Lipp M, Kondo S, Manley N, Takahama Y. Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood. 2006;108(8):2531–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge O-J, Thoren LAM, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SEW. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Månsson R, Hultquist A, Luc S, Yang L, Anderson K, Kharazi S, Al-Hashmi S, Liuba K, Thorén L, Adolfsson J, Buza-Vidas N, Qian H, Soneji S, Enver T, Sigvardsson M, Jacobsen SEW. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity. 2007;26(4):407–19.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yoshimoto M, Porayette P, Glosson NL, Conway SJ, Carlesso N, Cardoso AA, Kaplan MH, Yoder MC. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood. 2012;119(24):5706–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yokota T, Huang J, Tavian M, Nagai Y, Hirose J, Zúñiga-Pflücker J-C, Péault B, Kincade PW. Tracing the first waves of lymphopoiesis in mice. Development. 2006;133(10):2041–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tavian M, Robin C, Coulombel L, Péault B. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity. 2001;15(3):487–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ivanovs A, Rybtsov S, Welch L, Anderson RA, Turner ML, Medvinsky A. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp Med. 2011;208(12):2417–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, Bian Z, Li Z, Ni Y, Yan J, Huang T, Shi H, Ma C, Chen X, Wang J, Bian L, Lan Y, Liu B, Hu H. Single-Cell RNA sequencing resolves spatiotemporal development of pre-thymic lymphoid progenitors and thymus organogenesis in human embryos. Immunity. 2019;51(5):930-948.e936.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schwarz BA, Sambandam A, Maillard I, Harman BC, Love PE, Bhandoola A. Selective thymus settling regulated by cytokine and chemokine receptors. J Immunol. 2007;178(4):2008–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Williams KM, Lucas PJ, Bare CV, Wang J, Chu Y-W, Tayler E, Kapoor V, Gress RE. CCL25 increases thymopoiesis after androgen withdrawal. Blood. 2008;112(8):3255–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kohn LA, Hao Q-L, Sasidharan R, Parekh C, Ge S, Zhu Y, Mikkola HKA, Crooks GM. Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin. Nat Immunol. 2012;13(10):963–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ceredig R. Fates and potentials of thymus-seeding progenitors. Nat Immunol. 2012;13(4):309–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge OJ, Thoren LA, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SE. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Belluschi S, Calderbank EF, Ciaurro V, Pijuan-Sala B, Santoro A, Mende N, Diamanti E, Sham KYC, Wang X, Lau WWY, Jawaid W, Göttgens B, Laurenti E. Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors. Nat Commun. 2018;9(1):4100–4100.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Luc S, Luis TC, Boukarabila H, Macaulay IC, Buza-Vidas N, Bouriez-Jones T, Lutteropp M, Woll PS, Loughran SJ, Mead AJ, Hultquist A, Brown J, Mizukami T, Matsuoka S, Ferry H, Anderson K, Duarte S, Atkinson D, Soneji S, Domanski A, Farley A, Sanjuan-Pla A, Carella C, Patient R, de Bruijn M, Enver T, Nerlov C, Blackburn C, Godin I, Jacobsen SEW. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat Immunol. 2012;13(4):412–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367(6480):eaay3224.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, Smith AJ, Boehm T. Two genetically separable steps in the differentiation of thymic epithelium. Science. 1996;272(5263):886–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su DM, Navarre S, Oh WJ, Condie BG, Manley NR. A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol. 2003;4(11):1128–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature. 2006;441(7096):992–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rodewald HR, Kretzschmar K, Swat W, Takeda S. Intrathymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo. Immunity. 1995;3(3):313–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Di Santo JP, Rodewald HR. In vivo roles of receptor tyrosine kinases and cytokine receptors in early thymocyte development. Curr Opin Immunol. 1998;10(2):196–207.

    PubMed 
    Article 

    Google Scholar
     

  • Wang H, Pierce LJ, Spangrude GJ. Distinct roles of IL-7 and stem cell factor in the OP9-DL1 T-cell differentiation culture system. Exp Hematol. 2006;34(12):1730–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ciofani M, Zuniga-Pflucker JC. The thymus as an inductive site for T lymphopoiesis. Annu Rev Cell Dev Biol. 2007;23:463–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams DE, Ware CB, Meyer JD, Davison BL. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994;180(5):1955–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995;2(3):223–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995;181(4):1519–26.

    Article 

    Google Scholar
     

  • Moore TA, von Freeden-Jeffry U, Murray R, Zlotnik A. Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 -/- mice. J Immunol. 1996;157(6):2366–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Hagenbeek TJ, Naspetti M, Malergue F, Garcon F, Nunes JA, Cleutjens KB, Trapman J, Krimpenfort P, Spits H. The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med. 2004;200(7):883–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ciofani M, Zuniga-Pflucker JC. A survival guide to early T cell development. Immunol Res. 2006;34(2):117–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature. 2003;426(6967):671–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR, van Dongen JJ, Herzenberg LA, Staal FJ. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA. 2006;103(9):3322–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mulroy T, McMahon JA, Burakoff SJ, McMahon AP, Sen J. Wnt-1 and Wnt-4 regulate thymic cellularity. Eur J Immunol. 2002;32(4):967–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of beta-catenin impairs T cell development. Nat Immunol. 2003;4(12):1177–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Famili F, Naber BA, Vloemans S, de Haas EF, Tiemessen MM, Staal FJ. Discrete roles of canonical and non-canonical Wnt signaling in hematopoiesis and lymphopoiesis. Cell Death Dis. 2015;6:e1981.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Outram SV, Varas A, Pepicelli CV, Crompton T. Hedgehog signaling regulates differentiation from double-negative to double-positive thymocyte. Immunity. 2000;13(2):187–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • El Andaloussi A, Graves S, Meng F, Mandal M, Mashayekhi M, Aifantis I. Hedgehog signaling controls thymocyte progenitor homeostasis and differentiation in the thymus. Nat Immunol. 2006;7(4):418–26.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Shah DK, Hager-Theodorides AL, Outram SV, Ross SE, Varas A, Crompton T. Reduced thymocyte development in sonic hedgehog knockout embryos. J Immunol. 2004;172(4):2296–306.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol. 2014;14(8):529–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, Aguet M. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity. 1999;10(5):547–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, Ikuta K, Honjo T. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol. 2002;14(6):637–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han X, Chen H, Huang D, Chen H, Fei L, Cheng C, Huang H, Yuan G-C, Guo G. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing. Genome Biol. 2018;19(1):47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hou S, Li Z, Zheng X, Gao Y, Dong J, Ni Y, Wang X, Li Y, Ding X, Chang Z, Li S, Hu Y, Fan X, Hou Y, Wen L, Liu B, Tang F, Lan Y. Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res. 2020;30(5):376–92.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Y-Q, Gong Y, Hou S, Huang T, Wang H, Liu D, Ni Y, Wang C, Wang J, Hou J, Yang R, Yan J, Zhang G, Liu B, Lan Y. Spatiotemporal and functional heterogeneity of hematopoietic stem cell-competent hemogenic endothelial cells in mouse embryos. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.699263.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Y, He J, Bai Z, Li Z, Gong Y, Liu C, Ni Y, Du J, Ma C, Bian L, Lan Y, Liu B. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res. 2019;29(11):881–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo R, Hu F, Weng Q, Lv C, Wu H, Liu L, Li Z, Zeng Y, Bai Z, Zhang M, Liu Y, Liu X, Xia C, Wang T, Zhou P, Wang K, Dong Y, Luo Y, Zhang X, Guan Y, Geng Y, Du J, Li Y, Lan Y, Chen J, Liu B, Wang J. Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res. 2020;30(1):21–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF, Goettel JA, Serrao E, Rowe RG, Malleshaiah M, Wong I, Sousa P, Zhu TN, Ditadi A, Keller G, Engelman AN, Snapper SB, Doulatov S, Daley GQ. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545(7655):432–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Angelos MG, Abrahante JE, Blum RH, Kaufman DS. Single cell resolution of human hematoendothelial cells defines transcriptional signatures of hemogenic endothelium. Stem Cells. 2018;36(2):206–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Canu G, Athanasiadis E, Grandy RA, Garcia-Bernardo J, Strzelecka PM, Vallier L, Ortmann D, Cvejic A. Analysis of endothelial-to-haematopoietic transition at the single cell level identifies cell cycle regulation as a driver of differentiation. Genome Biol. 2020;21(1):157.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fidanza A, Stumpf PS, Ramachandran P, Tamagno S, Babtie A, Lopez-Yrigoyen M, Taylor AH, Easterbrook J, Henderson BEP, Axton R, Henderson NC, Medvinsky A, Ottersbach K, Romanò N, Forrester LM. Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs. Blood. 2020;136(25):2893–904.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, Chen H, Wang J, Tang H, Ge W, Zhou Y, Ye F, Jiang M, Wu J, Xiao Y, Jia X, Zhang T, Ma X, Zhang Q, Bai X, Lai S, Yu C, Zhu L, Lin R, Gao Y, Wang M, Wu Y, Zhang J, Zhan R, Zhu S, et al. Construction of a human cell landscape at single-cell level. Nature. 2020;581(7808):303–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu Y, Wang T, Gu J, Huang K, Zhang T, Zhang Z, Liu H, Tang J, Mai Y, Zhang Y, Li Y, Feng Y, Kang B, Li J, Shan Y, Chen Q, Zhang J, Long B, Wang J, Gao M, Zhang D, Zhou M, Zhong X, Chen J, Pei D, Nie J, Liu B, Pan G. Characterization and generation of human definitive multipotent hematopoietic stem/progenitor cells. Cell Discov. 2020;6(1):89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shen J, Xu Y, Zhang S, Lyu S, Huo Y, Zhu Y, Tang K, Mou J, Li X, Hoyle DL, Wang M, Wang J, Li X, Wang ZZ, Cheng T. Single-cell transcriptome of early hematopoiesis guides arterial endothelial-enhanced functional T cell generation from human PSCs. Sci Adv. 2021;7(36):eabi978.

    Article 
    CAS 

    Google Scholar
     

  • Trotman-Grant AC, Mohtashami M, De Sousa CJ, Martinez EC, Lee D, Teichman S, Brauer PM, Han J, Anderson MK, Zúñiga-Pflücker JC. DL4-μbeads induce T cell lineage differentiation from stem cells in a stromal cell-free system. Nat Commun. 2021;12(1):5023.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo R, Wu H, Du J, Wang J. T cell regeneration: an update on progress and challenges. Blood Sci. 2020;2(1):22–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen U, Kosco M, Staerz U. Establishment and characterization of lymphoid and myeloid mixed-cell populations from mouse late embryoid bodies, “embryonic-stem-cell fetuses.” Proc Natl Acad Sci USA. 1992;89(7):2541–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gutierrez-Ramos JC, Palacios R. In vitro differentiation of embryonic stem cells into lymphocyte precursors able to generate T and B lymphocytes in vivo. Proc Natl Acad SciU SA. 1992;89(19):9171–5.

    CAS 
    Article 

    Google Scholar
     

  • Muller AM, Dzierzak EA. ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients. Development. 1993;118(4):1343–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Potocnik AJ, Nielsen PJ, Eichmann K. In vitro generation of lymphoid precursors from embryonic stem cells. EMBO J. 1994;13(22):5274–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Pooter RF, Cho SK, Carlyle JR, Zuniga-Pflucker JC. In vitro generation of T lymphocytes from embryonic stem cell-derived prehematopoietic progenitors. Blood. 2003;102(5):1649–53.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Galic Z, Kitchen SG, Kacena A, Subramanian A, Burke B, Cortado R, Zack JA. T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci USA. 2006;103(31):11742–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmitt TM, de Pooter RF, Gronski MA, Cho SK, Ohashi PS, Zuniga-Pflucker JC. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol. 2004;5(4):410–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T, Moore HD, Leclercq G, Langerak AW, Kerre T, Plum J, Vandekerckhove B. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol. 2009;182(11):6879–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang CW, Lai YS, Lamb LS Jr, Townes TM. Broad T-cell receptor repertoire in T-lymphocytes derived from human induced pluripotent stem cells. PLoS ONE. 2014;9(5):e97335.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhou F, Li X, Wang W, Zhu P, Zhou J, He W, Ding M, Xiong F, Zheng X, Li Z, Ni Y, Mu X, Wen L, Cheng T, Lan Y, Yuan W, Tang F, Liu B. Tracing haematopoietic stem cell formation at single-cell resolution. Nature. 2016;533(7604):487–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kennedy M, Awong G, Sturgeon CM, Ditadi A, LaMotte-Mohs R, Zuniga-Pflucker JC, Keller G. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2(6):1722–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kitayama S, Zhang R, Liu TY, Ueda N, Iriguchi S, Yasui Y, Kawai Y, Tatsumi M, Hirai N, Mizoro Y, Iwama T, Watanabe A, Nakanishi M, Kuzushima K, Uemura Y, Kaneko S. Cellular adjuvant properties, direct cytotoxicity of re-differentiated Valpha24 Invariant NKT-like Cells from human induced pluripotent stem cells. Stem Cell Rep. 2016;6(2):213–27.

    CAS 
    Article 

    Google Scholar
     

  • Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, Sadelain M. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31(10):928–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, Nakayama-Hosoya K, Iriguchi S, Uemura Y, Shimizu T, Takayama N, Yamada D, Nishimura K, Ohtaka M, Watanabe N, Takahashi S, Iwamoto A, Koseki H, Nakanishi M, Eto K, Nakauchi H. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell. 2013;12(1):114–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McNicol A-M, Bendle G, Holler A, Matjeka T, Dalton E, Rettig L, Zamoyska R, Uckert W, Xue S-A, Stauss HJ. CD8α/α homodimers fail to function as co-receptor for a CD8-dependent TCR. Eur J Immunol. 2007;37(6):1634–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheroutre H, Lambolez F. Doubting the TCR coreceptor function of CD8alphaalpha. Immunity. 2008;28(2):149–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii S, Koseki H, Kawamoto H. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell. 2013;12(1):31–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maeda T, Nagano S, Ichise H, Kataoka K, Yamada D, Ogawa S, Koseki H, Kitawaki T, Kadowaki N, Takaori-Kondo A, Masuda K, Kawamoto H. Regeneration of CD8alphabeta T cells from T-cell-derived iPSC imparts potent tumor antigen-specific cytotoxicity. Cancer Res. 2016;76(23):6839–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Minagawa A, Yoshikawa T, Yasukawa M, Hotta A, Kunitomo M, Iriguchi S, Takiguchi M, Kassai Y, Imai E, Yasui Y, Kawai Y, Zhang R, Uemura Y, Miyoshi H, Nakanishi M, Watanabe A, Hayashi A, Kawana K, Fujii T, Nakatsura T, Kaneko S. Enhancing T cell receptor stability in rejuvenated iPSC-derived T cells improves their use in cancer immunotherapy. Cell Stem Cell. 2018;23(6):850-858.e854.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haque M, Xiong X, Lei F, Das JK, Song J. An optimized protocol for the generation of HBV viral antigen-specific T lymphocytes from pluripotent stem cells. STAR Protoc. 2021;2(1):100264.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vizcardo R, Klemen ND, Islam SMR, Gurusamy D, Tamaoki N, Yamada D, Koseki H, Kidder BL, Yu Z, Jia L, Henning AN, Good ML, Bosch-Marce M, Maeda T, Liu C, Abdullaev Z, Pack S, Palmer DC, Stroncek DF, Ito F, Flomerfelt FA, Kruhlak MJ, Restifo NP. Generation of tumor antigen-specific iPSC-derived thymic emigrants using a 3D thymic culture system. Cell Rep. 2018;22(12):3175–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seet CS, He C, Bethune MT, Li S, Chick B, Gschweng EH, Zhu Y, Kim K, Kohn DB, Baltimore D, Crooks GM, Montel-Hagen A. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat Methods. 2017;14(5):521–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Montel-Hagen A, Seet CS, Li S, Chick B, Zhu Y, Chang P, Tsai S, Sun V, Lopez S, Chen HC, He C, Chin CJ, Casero D, Crooks GM. Organoid-induced differentiation of conventional T cells from human pluripotent stem cells. Cell Stem Cell. 2019;24(3):376-389.e378.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yano H, Shinohara T, Koga K, Iriguchi S, Miyake Y, Song X, Tada M, Kassai Y, Kiyoi H, Kaneko S. Guided polarization of iPSC-derived CD4SP helper T Cells By CRISPR/Cas9-based genome-editing. Blood. 2019;134(Supplement_1):1937–1937.

    Article 

    Google Scholar
     

  • Iriguchi S, Yasui Y, Kawai Y, Arima S, Kunitomo M, Sato T, Ueda T, Minagawa A, Mishima Y, Yanagawa N, Baba Y, Miyake Y, Nakayama K, Takiguchi M, Shinohara T, Nakatsura T, Yasukawa M, Kassai Y, Hayashi A, Kaneko S. A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nat Commun. 2021;12(1):430.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo R, Hu F, Weng Q, Lv C, Wu H, Liu B, Wang J. Reconstitution of T lymphopoiesis from pluripotent stem cells by defined transcription factors. Exp Hematol. 2019;76:S54.

    Article 

    Google Scholar
     

  • Shu J, Deng H. Lineage specifiers: new players in the induction of pluripotency. Genomics Proteomics Bioinform. 2013;11(5):259–63.

    CAS 
    Article 

    Google Scholar
     

  • Graf T. Transcription factor stoichiometry drives cell fate: single-cell proteomics to the rescue. Cell Stem Cell. 2019;24(5):673–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009;457(7231):887–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Freire AG, Butler JM. Blood making: learning what to put into the dish. Nature. 2020;9:1000.


    Google Scholar
     

  • Bhatlekar S, Fields JZ, Boman BM. Role of HOX genes in stem cell differentiation and cancer. Stem Cells Int. 2018;2018:3569493.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lv C, Chen S, Hu F, Huang D, Wang T, Du J, Wang J, Wu H. Pluripotent stem cell-derived CD19-CAR iT cells effectively eradicate B-cell lymphoma in vivo. Cell Mol Immunol. 2021;18(3):773–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gardner CL, Pavel-Dinu M, Dobbs K, Bosticardo M, Reardon PK, Lack J, DeRavin SS, Le K, Bello E, Pala F, Delmonte OM, Malech H, Montel-Hagan A, Crooks G, Acuto O, Porteus MH, Notarangelo LD. Gene editing rescues in vitro t cell development of RAG2-Deficient induced pluripotent stem cells in an artificial thymic organoid system. J Clin Immunol. 2021. https://doi.org/10.1007/s10875-021-00989-6.

    Article 
    PubMed 

    Google Scholar
     

  • Themeli M, Chhatta A, Boersma H, Prins HJ, Cordes M, de Wilt E, Farahani AS, Vandekerckhove B, van der Burg M, Hoeben RC, Staal FJT, Mikkers HMM. iPSC-Based Modeling of <em>RAG2</em> Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests. Stem Cell Reports. 2020;14(2):300–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Menegatti S, de Kruijf M, Garcia-Alegria E, Lacaud G, Kouskoff V. Transcriptional control of blood cell emergence. FEBS Lett. 2019;593(23):3304–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109(1):29–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Yates F, Naveiras O, Ernst P, Daley GQ. Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci USA. 2005;102(52):19081–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vo LT, Kinney MA, Liu X, Zhang Y, Barragan J, Sousa PM, Jha DK, Han A, Cesana M, Shao Z, North TE, Orkin SH, Doulatov S, Xu J, Daley GQ. Regulation of embryonic haematopoietic multipotency by EZH1. Nature. 2018;553(7689):506–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kitajima K, Minehata K, Sakimura K, Nakano T, Hara T. In vitro generation of HSC-like cells from murine ESCs/iPSCs by enforced expression of LIM-homeobox transcription factor Lhx2. Blood. 2011;117(14):3748–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kitajima K, Kawaguchi M, Miyashita K, Nakajima M, Kanokoda M, Hara T. Efficient production of T cells from mouse pluripotent stem cells by controlled expression of Lhx2. Genes Cells. 2015;20(9):720–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tan Y-T, Ye L, Xie F, Beyer AI, Muench MO, Wang J, Chen Z, Liu H, Chen S-J, Kan YW. Respecifying human iPSC-derived blood cells into highly engraftable hematopoietic stem and progenitor cells with a single factor. Proc Natl Acad Sci. 2018;115(9):2180–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsukada M, Ota Y, Wilkinson AC, Becker HJ, Osato M, Nakauchi H, Yamazaki S. In vivo generation of engraftable murine hematopoietic stem cells by Gfi1b, c-Fos, and Gata2 overexpression within Teratoma. Stem Cell Reports. 2017;9(4):1024–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Philipp F, Selich A, Rothe M, Hoffmann D, Rittinghausen S, Morgan MA, Klatt D, Glage S, Lienenklaus S, Neuhaus V, Sewald K, Braun A, Schambach A. Human teratoma-derived hematopoiesis is a highly polyclonal process supported by human umbilical vein endothelial cells. Stem Cell Reports. 2018;11(5):1051–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Amabile G, Welner RS, Nombela-Arrieta C, D’Alise AM, Di Ruscio A, Ebralidze AK, Kraytsberg Y, Ye M, Kocher O, Neuberg DS, Khrapko K, Silberstein LE, Tenen DG. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood. 2013;121(8):1255–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Iqbal MA, Hong K, Kim JH, Choi Y. Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines. BMB Rep. 2019;52(11):625–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Helsen CW, Hammill JA, Lau VWC, Mwawasi KA, Afsahi A, Bezverbnaya K, Newhook L, Hayes DL, Aarts C, Bojovic B, Denisova GF, Kwiecien JM, Brain I, Derocher H, Milne K, Nelson BH, Bramson JL. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat Commun. 2018;9(1):3049.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bertoletti A, Tan AT. Challenges of CAR- and TCR-T cell–based therapy for chronic infections. J Exp Med. 2020;217(5):e20191663.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W, Wang T, Bedi K, Morley MP, Linares Saldana RA, Bolar NA, McDaid K, Assenmacher CA, Smith CL, Wirth D, June CH, Margulies KB, Jain R, Pure E, Albelda SM, Epstein JA. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573(7774):430–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Torikai H, Reik A, Liu P-Q, Zhou Y, Zhang L, Maiti S, Huls H, Miller JC, Kebriaei P, Rabinovitch B, Lee DA, Champlin RE, Bonini C, Naldini L, Rebar EJ, Gregory PD, Holmes MC, Cooper LJN. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119(24):5697–705.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, Prunkard D, Colunga AG, Hanafi L-A, Clegg DO, Turtle C, Russell DW. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol. 2017;35(8):765–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27(4):523–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Albert S, Koristka S, Gerbaulet A, Cartellieri M, Arndt C, Feldmann A, Berndt N, Loureiro LR, von Bonin M, Ehninger G, Eugster A, Bonifacio E, Bornhauser M, Bachmann MP, Ehninger A. Tonic signaling and its effects on lymphopoiesis of CAR-armed hematopoietic stem and progenitor cells. J Immunol. 2019;202(6):1735–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sachdeva M, Duchateau P, Depil S, Poirot L, Valton J. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J Biol Chem. 2019;294(14):5430–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sterner RM, Cox MJ, Sakemura R, Kenderian SS. Using CRISPR/Cas9 to knock out GM-CSF in CAR-T cells. J Vis Exp. 2019. https://doi.org/10.3791/59629.

    Article 
    PubMed 

    Google Scholar
     

  • Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, Hansen MJ, Jin F, Ayasoufi K, Hefazi M, Schick KJ, Walters DK, Ahmed O, Chappell D, Sahmoud T, Durrant C, Nevala WK, Patnaik MM, Pease LR, Hedin KE, Kay NE, Johnson AJ, Kenderian SS. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133(7):697–709.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu B, Song Y, Liu D. Clinical trials of CAR-T cells in China. J Hematol Oncol. 2017;10(1):166.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei J, Han X, Bo J, Han W. Target selection for CAR-T therapy. J Hematol Oncol. 2019;12(1):62.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to pd1 inhibition. Clin Cancer Res. 2017;23(9):2255–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hernandez S, Qing J, Thibodeau RH, Du X, Park S, Lee HM, Xu M, Oh S, Navarro A, Roose-Girma M, Newman RJ, Warming S, Nannini M, Sampath D, Kim JM, Grogan JL, Mellman I. The kinase activity of hematopoietic progenitor kinase 1 is essential for the regulation of t cell function. Cell Rep. 2018;25(1):80–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Simon B, Harrer DC, Schulerthurner B, Schaft N, Schuler G, Dorrie J, Uslu U. The siRNA-mediated downregulation of PD-1 alone or simultaneously with CTLA-4 shows enhanced in vitro CAR-T-cell functionality for further clinical development towards the potential use in immunotherapy of melanoma. Exp Dermatol. 2018;27(7):769–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014. https://doi.org/10.3389/fphar.2014.00235.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014. https://doi.org/10.3389/fphar.2014.00254.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, Lim WA. Precision tumor recognition by t cells with combinatorial antigen-sensing circuits. Cell. 2016;164(4):770–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol. 2013;997:23–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181-192.e185.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14(2):213–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015;125(17):2605–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature. 2018;553(7689):418–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chabannon C, Kuball J, Bondanza A, Dazzi F, Pedrazzoli P, Toubert A, Ruggeri A, Fleischhauer K, Bonini C. Hematopoietic stem cell transplantation in its 60s: a platform for cellular therapies. Sci Transl Med. 2018;10(436):eaap9630.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Dong F, Hao S, Zhang S, Zhu C, Cheng H, Yang Z, Hamey FK, Wang X, Gao A, Wang F, Gao Y, Dong J, Wang C, Wang J, Lan Y, Liu B, Ema H, Tang F, Göttgens B, Zhu P, Cheng T. Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nat Cell Biol. 2020;22:630.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, Arthur DC, Gu W, Gould CM, Brewer CC, Cowen EW, Freeman AF, Olivier KN, Uzel G, Zelazny AM, Daub JR, Spalding CD, Claypool RJ, Giri NK, Alter BP, Mace EM, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kernfeld EM, Genga RMJ, Neherin K, Magaletta ME, Xu P, Maehr R. A single-cell transcriptomic atlas of thymus organogenesis resolves cell types and developmental maturation. Immunity. 2018;48(6):1258-1270.e1256.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu H, Pan C, Song W, Liu D, Li Z, Zheng L. Novel strategies for immuno-oncology breakthroughs with cell therapy. Biomark Research. 2021;9(1):62.

    Article 

    Google Scholar
     

  • Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, Xie X, Li Y. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomarker Res. 2021;9(1):72.

    Article 

    Google Scholar
     

  • Eladl E, Tremblay-LeMay R, Rastgoo N, Musani R, Chen W, Liu A, Chang H. Role of CD47 in hematological malignancies. J Hematol Oncol. 2020;13(1):96.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pan C, Liu H, Robins E, Song W, Liu D, Li Z, Zheng L. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13(1):29.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol. 2020;13(1):54.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol. 2020;13(1):167.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yilmaz A, Cui H, Caligiuri MA, Yu J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol. 2020;13(1):168.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jiang Z, Sun H, Yu J, Tian W, Song Y. Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 2021;14(1):180.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)