• Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 2004;53(2):474–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang J, Chen C, Hua S, Liao H, Wang M, Xiong Y, et al. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. Diabetes Res Clin Pract. 2017;124:41–7.

    PubMed 
    Article 

    Google Scholar
     

  • Chatterjee S, Peters SA, Woodward M, MejiaArango S, Batty GD, Beckett N, et al. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 23 million people comprising more than 100,000 cases of dementia. Diabetes Care. 2016;39(2):300–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gottesman RF, Albert MS, Alonso A, Coker LH, Coresh J, Davis SM, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the atherosclerosis risk in communities (ARIC) Cohort. JAMA Neurol. 2017;74(10):1246–54.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ng TP, Feng L, Nyunt MS, Feng L, Gao Q, Lim ML, et al. Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: follow-up of the singapore longitudinal ageing study cohort. JAMA Neurol. 2016;73(4):456–63.

    PubMed 
    Article 

    Google Scholar
     

  • CDC. National Diabetes Statistics Report website. 2020. https://www.cdc.gov/diabetes/data/statistics-report/index.htm.

  • Whitmer RA, Gunderson EP, Quesenberry CP Jr, Zhou J, Yaffe K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res. 2007;4(2):103–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pedditizi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45(1):14–21.

    Article 

    Google Scholar
     

  • Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology. 2011;76(18):1568–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2020;16(3):391–460.

  • Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer’s disease–lessons from pathology. BMC Med. 2014;12:206.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol. 1986;19(3):253–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fernando MS, Ince PG, Function MRCC. Vascular pathologies and cognition in a population-based cohort of elderly people. J Neurol Sci. 2004;226(12):13–7.

    PubMed 
    Article 

    Google Scholar
     

  • Ruitenberg A, Ott A, van Swieten JC, Hofman A, Breteler MM. Incidence of dementia: does gender make a difference? Neurobiol Aging. 2001;22(4):575–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gannon OJ, Robison LS, Custozzo AJ, Zuloaga KL. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int. 2019;127:38–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu CL, Lin MY, Hwang SJ, Liu CK, Lee HL, Wu MT. Factors associated with type 2 diabetes in patients with vascular dementia: a population-based cross-sectional study. BMC Endocr Disord. 2018;18(1):45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sundermann EE, Thomas KR, Bangen KJ, Weigand AJ, Eppig JS, Edmonds EC, et al. Prediabetes is associated with brain hypometabolism and cognitive decline in a sex-dependent manner: a longitudinal study of nondemented older adults. Front Neurol. 2021;12: 551975.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robison LS, Albert NM, Camargo LA, Anderson BM, Salinero AE, Riccio DA, et al. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. Neuro. 2020;7(1):19.


    Google Scholar
     

  • Salinero AE, Robison LS, Gannon OJ, Riccio D, Mansour F, Abi-Ghanem C, et al. Sex-specific effects of high-fat diet on cognitive impairment in a mouse model of VCID. FASEB J. 2020;34(11):15108–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rollins CPE, Gallino D, Kong V, Ayranci G, Devenyi GA, Germann J, et al. Contributions of a high-fat diet to Alzheimer’s disease-related decline: A longitudinal behavioural and structural neuroimaging study in mouse models. Neuroimage Clin. 2019;21: 101606.

    PubMed 
    Article 

    Google Scholar
     

  • Barron AM, Rosario ER, Elteriefi R, Pike CJ. Sex-specific effects of high fat diet on indices of metabolic syndrome in 3xTg-AD mice: implications for Alzheimer’s disease. PLoS ONE. 2013;8(10): e78554.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Knight EM, Martins IVA, Gümüsgöz S, Allan SM, Lawrence CB. High-fat diet-induced memory impairment in triple-transgenic Alzheimer’s disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging. 2014;35(8):1821–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sah SK, Lee C, Jang JH, Park GH. Effect of high-fat diet on cognitive impairment in triple-transgenic mice model of Alzheimer’s disease. Biochem Biophys Res Commun. 2017;493(1):731–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim D, Cho J, Lee I, Jin Y, Kang H. Exercise Attenuates High-Fat Diet-induced Disease Progression in 3xTg-AD Mice. Med Sci Sports Exerc. 2017;49(4):676–86.

    PubMed 
    Article 

    Google Scholar
     

  • Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, et al. Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes. 2014;63(12):4291–301.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Julien C, Tremblay C, Phivilay A, Berthiaume L, Emond V, Julien P, et al. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging. 2010;31(9):1516–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramos-Rodriguez JJ, Ortiz-Barajas O, Gamero-Carrasco C, de la Rosa PR, Infante-Garcia C, Zopeque-Garcia N, et al. Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice. Psychoneuroendocrinology. 2014;48:123–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramos-Rodriguez JJ, Spires-Jones T, Pooler AM, Lechuga-Sancho AM, Bacskai BJ, Garcia-Alloza M. Progressive neuronal pathology and synaptic loss induced by prediabetes and type 2 diabetes in a mouse model of Alzheimer’s Disease. Mol Neurobiol. 2017;54(5):3428–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robison LS, Gannon OJ, Thomas MA, Salinero AE, Abi-Ghanem C, Poitelon Y, et al. Role of sex and high-fat diet in metabolic and hypothalamic disturbances in the 3xTg-AD mouse model of Alzheimer’s disease. J Neuroinflammation. 2020;17(1):285.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular aβ and synaptic dysfunction. Neuron. 2003;39(3):409–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zuloaga KL, Zhang W, Yeiser LA, Stewart B, Kukino A, Nie X, et al. Neurobehavioral and imaging correlates of hippocampal atrophy in a mouse model of vascular cognitive impairment. Transl Stroke Res. 2015;6(5):390–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zuloaga KL, Johnson LA, Roese NE, Marzulla T, Zhang W, Nie X, et al. High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion. J Cereb Blood Flow Metab. 2016;36(7):1257–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salinero AE, Anderson BM, Zuloaga KL. Sex differences in the metabolic effects of diet-induced obesity vary by age of onset. Int J Obes (Lond). 2018;42(5):1088–91.

    Article 

    Google Scholar
     

  • Gulinello M, Gertner M, Mendoza G, Schoenfeld BP, Oddo S, LaFerla F, et al. Validation of a 2-day water maze protocol in mice. Behav Brain Res. 2009;196(2):220–7.

    PubMed 
    Article 

    Google Scholar
     

  • Deacon RM. Assessing nest building in mice. Nat Protoc. 2006;1(3):1117–9.

    PubMed 
    Article 

    Google Scholar
     

  • Polycarpou A, Hricisák L, Iring A, Safar D, Ruisanchez É, Horváth B, Sándor P, Benyó Z. Adaptation of the cerebrocortical circulation to carotid artery occlusion involves blood flow redistribution between cortical regions and is independent of eNOS. Am J Physiol Heart Circ Physiol. 2016;311(4):H972–80.

    PubMed 
    Article 

    Google Scholar
     

  • Graham LC, Harder JM, Soto I, de Vries WN, John SWM, Howell GR. Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer’s disease. Sci Rep. 2016;6:21568.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Javonillo DI, Tran KM, Phan J, Hingco E, Kramár EA, Cunha C, et al. Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer’s Disease. Front Neurosci. 2022;15:89.

    Article 

    Google Scholar
     

  • Lin B, Hasegawa Y, Takane K, Koibuchi N, Cao C, Kim-Mitsuyama S. High-fat-diet intake enhances cerebral amyloid angiopathy and cognitive impairment in a mouse model of alzheimer’s disease, independently of metabolic disorders. J Am Heart Assoc. 2016;5(6): e003154.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang JT, Wang ZJ, Cai HY, Yuan L, Hu MM, Wu MN, et al. Sex differences in neuropathology and cognitive behavior in APP/PS1/tau triple-transgenic mouse model of Alzheimer’s Disease. Neurosci Bull. 2018;34(5):736–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen ET, Selmanovic D, Maltry M, Morano R, Franco-Villanueva A, Estrada CM, et al. Endocrine stress responsivity and social memory in 3xTg-AD female and male mice: A tale of two experiments. Horm Behav. 2020;126: 104852.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carroll JC, Rosario ER, Kreimer S, Villamagna A, Gentzschein E, Stanczyk FZ, et al. Sex differences in β-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure. Brain Res. 2010;1366:233–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clinton LK, Billings LM, Green KN, Caccamo A, Ngo J, Oddo S, et al. Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis. 2007;28(1):76–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stimmell AC, Baglietto-Vargas D, Moseley SC, Lapointe V, Thompson LM, LaFerla FM, et al. Impaired Spatial Reorientation in the 3xTg-AD Mouse Model of Alzheimer’s Disease. Sci Rep. 2019;9(1):1311.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Blázquez G, Cañete T, Tobeña A, Giménez-Llort L, Fernández-Teruel A. Cognitive and emotional profiles of aged Alzheimer’s disease (3×TgAD) mice: effects of environmental enrichment and sexual dimorphism. Behav Brain Res. 2014;268:185–201.

    PubMed 
    Article 

    Google Scholar
     

  • Stevens LM, Brown RE. Reference and working memory deficits in the 3xTg-AD mouse between 2 and 15-months of age: a cross-sectional study. Behav Brain Res. 2015;278:496–505.

    PubMed 
    Article 

    Google Scholar
     

  • Stover KR, Campbell MA, Van Winssen CM, Brown RE. Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer’s disease. Behav Brain Res. 2015;289:29–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoshizaki K, Adachi K, Kataoka S, Watanabe A, Tabira T, Takahashi K, et al. Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol. 2008;210(2):585–91.

    PubMed 
    Article 

    Google Scholar
     

  • Urushihata T, Takuwa H, Seki C, Tachibana Y, Takahashi M, Kershaw J, et al. Water Diffusion in the Brain of Chronic Hypoperfusion Model Mice: A Study Considering the Effect of Blood Flow. Magn Reson Med Sci. 2018;17(4):318–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng P, Ren Y, Bai S, Wu Y, Xu Y, Pan J, et al. Chronic cerebral ischemia induces downregulation of A1 adenosine receptors during white matter damage in adult mice. Cell Mol Neurobiol. 2015;35(8):1149–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qiu L, Ng G, Tan EK, Liao P, Kandiah N, Zeng L. Chronic cerebral hypoperfusion enhances Tau hyperphosphorylation and reduces autophagy in Alzheimer’s disease mice. Sci Rep. 2016;6:23964.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lana D, Ugolini F, Giovannini MG. An overview on the differential interplay among neurons-astrocytes-microglia in CA1 and CA3 hippocampus in hypoxia/ischemia. Front Cell Neurosci. 2020;14: 585833.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma J, Xiong JY, Hou WW, Yan HJ, Sun Y, Huang SW, et al. Protective effect of carnosine on subcortical ischemic vascular dementia in mice. CNS Neurosci Ther. 2012;18(9):745–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frontiñán-Rubio J, Sancho-Bielsa FJ, Peinado JR, LaFerla FM, Giménez-Llort L, Durán-Prado M, et al. Sex-dependent co-occurrence of hypoxia and β-amyloid plaques in hippocampus and entorhinal cortex is reversed by long-term treatment with ubiquinol and ascorbic acid in the 3 × Tg-AD mouse model of Alzheimer’s disease. Mol Cell Neurosci. 2018;92:67–81.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Javonillo DI, Tran KM, Phan J, Hingco E, Kramár EA, da Cunha C, et al. Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer’s Disease. Front Neurosci. 2021;15: 785276.

    PubMed 
    Article 

    Google Scholar
     

  • Creighton SD, Mendell AL, Palmer D, Kalisch BE, MacLusky NJ, Prado VF, et al. Dissociable cognitive impairments in two strains of transgenic Alzheimer’s disease mice revealed by a battery of object-based tests. Sci Rep. 2019;9(1):57.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fanet H, Tournissac M, Leclerc M, Caron V, Tremblay C, Vancassel S, et al. Tetrahydrobiopterin improves recognition memory in the triple-transgenic mouse Model of Alzheimer’s Disease, Without Altering Amyloid-β and Tau Pathologies. J Alzheimer’s Dis. 2021;79(2):709–27.

    CAS 
    Article 

    Google Scholar
     

  • Gali CC, Fanaee-Danesh E, Zandl-Lang M, Albrecher NM, Tam-Amersdorfer C, Stracke A, et al. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci. 2019;99: 103390.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Christensen A, Pike CJ. Age-dependent regulation of obesity and Alzheimer-related outcomes by hormone therapy in female 3xTg-AD mice. PLoS ONE. 2017;12(6): e0178490.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, et al. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Invest. 2015;125(6):2463–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zuloaga KL, Johnson LA, Roese NE, Marzulla T, Zhang W, Nie X, et al. High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion. J Cerebral Blood Flow Metab. 2016;36(7):1257–70.

    CAS 
    Article 

    Google Scholar
     

  • Bracko O, Vinarcsik LK, Cruz Hernández JC, Ruiz-Uribe NE, Haft-Javaherian M, Falkenhain K, et al. High fat diet worsens Alzheimer’s disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow. Sci Rep. 2020;10(1):9884.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pires PW, McClain JL, Hayoz SF, Dorrance AM. Mineralocorticoid receptor antagonism prevents obesity-induced cerebral artery remodeling and reduces white matter injury in rats. Microcirculation. 2018;25(5): e12460.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Robison LS, Gannon OJ, Salinero AE, Zuloaga KL. Contributions of sex to cerebrovascular function and pathology. Brain Res. 2019;1710:43–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, et al. Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer’s disease animal model. Proc Natl Acad Sci U S A. 2005;102(52):19198–203.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Christensen A, Liu J, Pike CJ. Aging reduces estradiol protection against neural but not metabolic effects of obesity in female 3xTg-AD Mice. Front Aging Neurosci. 2020;12:113.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ishunina TA, Fischer DF, Swaab DF. Estrogen receptor alpha and its splice variants in the hippocampus in aging and Alzheimer’s disease. Neurobiol Aging. 2007;28(11):1670–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cai M, Ma YL, Qin P, Li Y, Zhang LX, Nie H, et al. The loss of estrogen efficacy against cerebral ischemia in aged postmenopausal female mice. Neurosci Lett. 2014;558:115–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Espeland MA, Brinton RD, Hugenschmidt C, Manson JE, Craft S, Yaffe K, et al. Impact of type 2 diabetes and postmenopausal hormone therapy on incidence of cognitive impairment in older women. Diabetes Care. 2015;38(12):2316–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu HL, Baughman VL, Pelligrino DA. Estrogen replacement treatment in diabetic ovariectomized female rats potentiates postischemic leukocyte adhesion in cerebral venules. Stroke. 2004;35(8):1974–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang L, Nair A, Krady K, Corpe C, Bonneau RH, Simpson IA, et al. Estrogen stimulates microglia and brain recovery from hypoxia-ischemia in normoglycemic but not diabetic female mice. J Clin Invest. 2004;113(1):85–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moffat SD, Zonderman AB, Metter EJ, Kawas C, Blackman MR, Harman SM, et al. Free testosterone and risk for Alzheimer disease in older men. Neurology. 2004;62(2):188–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yassin A, Haider A, Haider KS, Caliber M, Doros G, Saad F, et al. Testosterone therapy in men with hypogonadism prevents progression from prediabetes to type 2 diabetes: eight-year data from a registry study. Diabetes Care. 2019;42(6):1104–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosario ER, Carroll JC, Pike CJ. Evaluation of the effects of testosterone and luteinizing hormone on regulation of β-amyloid in male 3xTg-AD mice. Brain Res. 2012;1466:137–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abi-Ghanem C, Robison LS, Zuloaga KL. Androgens’ effects on cerebrovascular function in health and disease. Biol Sex Differ. 2020;11(1):35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Geary GG, Krause DN, Duckles SP. Gonadal hormones affect diameter of male rat cerebral arteries through endothelium-dependent mechanisms. Am J Physiol Heart Circ Physiol. 2000;279(2):H610–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gonzales RJ, Krause DN, Duckles SP. Testosterone suppresses endothelium-dependent dilation of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2004;286(2):H552–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gonzales RJ, Ghaffari AA, Duckles SP, Krause DN. Testosterone treatment increases thromboxane function in rat cerebral arteries. Am J Physiol Heart Circ Physiol. 2005;289(2):H578–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Razmara A, Krause DN, Duckles SP. Testosterone augments endotoxin-mediated cerebrovascular inflammation in male rats. Am J Physiol Heart Circ Physiol. 2005;289(5):H1843–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gonzales RJ, Duckles SP, Krause DN. Dihydrotestosterone stimulates cerebrovascular inflammation through NFkappaB, modulating contractile function. J Cereb Blood Flow Metab. 2009;29(2):244–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zuloaga KL, Gonzales RJ. Dihydrotestosterone attenuates hypoxia inducible factor-1α and cyclooxygenase-2 in cerebral arteries during hypoxia or hypoxia with glucose deprivation. Am J Physiol Heart Circ Physiol. 2011;301(5):H1882–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zuloaga KL, O’Connor DT, Handa RJ, Gonzales RJ. Estrogen receptor beta dependent attenuation of cytokine-induced cyclooxygenase-2 by androgens in human brain vascular smooth muscle cells and rat mesenteric arteries. Steroids. 2012;77(8–9):835–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McCollum M, Hansen LS, Lu L, Sullivan PW. Gender differences in diabetes mellitus and effects on self-care activity. Gend Med. 2005;2(4):246–54.

    PubMed 
    Article 

    Google Scholar
     

  • Dufouil C, Seshadri S, Chene G. Cardiovascular risk profile in women and dementia. J Alzheimers Dis. 2014;42(Suppl 4):S353–63.

    PubMed 
    Article 

    Google Scholar
     

  • Xu W, Qiu C, Winblad B, Fratiglioni L. The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes. 2007;56(1):211–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xue M, Xu W, Ou YN, Cao XP, Tan MS, Tan L, et al. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55: 100944.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luchsinger JA, Palta P, Rippon B, Sherwood G, Soto L, Ceballos F, et al. Pre-diabetes, but not type 2 diabetes, is related to brain amyloid in late middle-age. J Alzheimers Dis. 2020;75(4):1241–52.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)