• Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Investig. 2018;128(4):1238–46.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (review). Int J Mol Med. 2017;39(4):775–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma C, Pi C, Yang Y, Lin L, Shi Y, Li Y, et al. Nampt expression decreases age-related senescence in rat bone marrow mesenchymal stem cells by targeting Sirt1. PLoS ONE. 2017;12(1): e0170930.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Folmes CD, Terzic A. Energy metabolism in the acquisition and maintenance of stemness. Semin Cell Dev Biol. 2016;52:68–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ross JM, Oberg J, Brene S, Coppotelli G, Terzioglu M, Pernold K, et al. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci USA. 2010;107(46):20087–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fan J, Hitosugi T, Chung TW, Xie J, Ge Q, Gu TL, et al. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol Cell Biol. 2011;31(24):4938–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bukowiecki R, Adjaye J, Prigione A. Mitochondrial function in pluripotent stem cells and cellular reprogramming. Gerontology. 2014;60(2):174–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001;107(1):67–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aravinthan A. Cellular senescence: a hitchhiker’s guide. Hum Cell. 2015;28(2):51–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bell DR, Van Zant G. Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene. 2004;23(43):7290–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jones DL, Rando TA. Emerging models and paradigms for stem cell ageing. Nat Cell Biol. 2011;13(5):506–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fang EF, Bohr VA. NAD(+): The convergence of DNA repair and mitophagy. Autophagy. 2017;13(2):442–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543(7644):205–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baraibar MA, Hyzewicz J, Rogowska-Wrzesinska A, Bulteau AL, Prip-Buus C, Butler-Browne G, et al. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes. Aging. 2016;8(12):3375.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanatsu-Shinohara M, Yamamoto T, Toh H, Kazuki Y, Kazuki K, Imoto J, et al. Aging of spermatogonial stem cells by Jnk-mediated glycolysis activation. Proc Natl Acad Sci USA. 2019;116(33):16404–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pi C, Yang Y, Sun Y, Wang H, Sun H, Ma M, et al. Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD(+)-Sirt1 signaling. Aging. 2019;11(11):3505–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He X, He J, Shi Y, Pi C, Yang Y, Sun Y, et al. Nicotinamide phosphoribosyltransferase (Nampt) may serve as the marker for osteoblast differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res. 2017;352(1):45–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun H, Sun Y, Yu X, Gao X, Wang H, Zhang L, et al. Analysis of age-related circular RNA expression profiles in mesenchymal stem cells of rat bone marrow. Front Genet. 2021. https://doi.org/10.3389/fgene.2021.600632.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pi C, Ma C, Wang H, Sun H, Yu X, Gao X, et al. MiR-34a suppression targets Nampt to ameliorate bone marrow mesenchymal stem cell senescence by regulating NAD(+)-Sirt1 pathway. Stem Cell Res Ther. 2021;12(1):271.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macedo JC, Vaz S, Logarinho E. Mitotic dysfunction associated with aging hallmarks. Adv Exp Med Biol. 2017;1002:153–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khademi-Shirvan M, Ghorbaninejad M, Hosseini S, Baghaban EM. The importance of stem cell senescence in regenerative medicine. Adv Exp Med Biol. 2020;1288:87–102.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao Y, Jia Z, Huang S, Wu Y, Liu L, Lin L, et al. Age-related changes in nucleus pulposus mesenchymal stem cells: an in vitro study in rats. Stem Cells Int. 2017;2017:6761572.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asumda FZ, Chase PB. Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biol. 2011;12:44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chandrasekaran A, Idelchik M, Melendez JA. Redox control of senescence and age-related disease. Redox Biol. 2017;11:91–102.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jin HJ, Lee HJ, Heo J, Lim J, Kim M, Kim MK, et al. Senescence-associated MCP-1 secretion is dependent on a decline in BMI1 in human mesenchymal stromal cells. Antioxid Redox Signal. 2016;24(9):471–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma C, Sun Y, Pi C, Wang H, Sun H, Yu X, et al. Sirt3 attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2. Front Cell Dev Biol. 2020;8: 599376.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang S, Hu B, Ding Z, Dang Y, Wu J, Li D, et al. ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov. 2018;4:2.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Jeffrey J, Dong F, Zhang J, Kao WW, Liu CY, et al. Repressed Wnt signaling accelerates the aging process in mouse eyes. J Ophthalmol. 2019;2019:7604396.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kayaaltı Z, Sahiner L, Durakoğlugil ME, Söylemezoğlu T. Distributions of interleukin-6 (IL-6) promoter and metallothionein 2A (MT2A) core promoter region gene polymorphisms and their associations with aging in Turkish population. Arch Gerontol Geriatr. 2011;53(3):354–8.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Harada S, Mabuchi Y, Kohyama J, Shimojo D, Suzuki S, Kawamura Y, et al. FZD5 regulates cellular senescence in human mesenchymal stem/stromal cells. Stem Cells. 2021;39(3):318–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ren S, Xiong H, Chen J, Yang X, Liu Y, Guo J, et al. The whole profiling and competing endogenous RNA network analyses of noncoding RNAs in adipose-derived stem cells from diabetic, old, and young patients. Stem Cell Res Ther. 2021;12(1):313.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yamakawa H, Kusumoto D, Hashimoto H, Yuasa S. Stem cell aging in skeletal muscle regeneration and disease. Int J Mol Sci. 2020;21(5):1830.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carlson ME, Hsu M, Conboy IM. Corrigendum: imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature. 2016;538(7624):274.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ho YH, Méndez-Ferrer S. Microenvironmental contributions to hematopoietic stem cell aging. Haematologica. 2020;105(1):38–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li X, Zeng X, Xu Y, Wang B, Zhao Y, Lai X, et al. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol. 2020;13(1):31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development (Cambridge, England). 2013;140(12):2535–47.

    CAS 
    Article 

    Google Scholar
     

  • Choi SW, Lee JY, Kang KS. miRNAs in stem cell aging and age-related disease. Mech Ageing Dev. 2017;168:20–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, et al. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell. 2015;16(2):171–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N, Iqbal S, et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science (New York, NY). 2015;348(6232):340–3.

    CAS 
    Article 

    Google Scholar
     

  • Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science (New York, NY). 2016;352(6292):1436–43.

    CAS 
    Article 

    Google Scholar
     

  • Xu Y, Li N, Xiang R, Sun P. Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci. 2014;39(6):268–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H, Komuro I. Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J. 2004;23(1):212–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu F, Shi J, Zhang Y, Lian A, Han X, Zuo K, et al. NANOG attenuates hair follicle-derived mesenchymal stem cell senescence by upregulating PBX1 and activating AKT signaling. Oxid Med Cell Longev. 2019;2019:4286213.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature. 2013;493(7434):689–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, et al. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death Differ. 2004;11(8):823–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu C, Li L. In vitro and in vivo hepatic differentiation of adult somatic stem cells and extraembryonic stem cells for treating end stage liver diseases. Stem Cells Int. 2015;2015: 871972.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. 2012;11(5):596–606.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gitenay D, Wiel C, Lallet-Daher H, Vindrieux D, Aubert S, Payen L, et al. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence. Cell Death Dis. 2014;5(2): e1089.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hariton F, Xue M, Rabbani N, Fowler M, Thornalley PJ. Sulforaphane delays fibroblast senescence by curbing cellular glucose uptake, increased glycolysis, and oxidative damage. Oxid Med Cell Longev. 2018;2018:5642148.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Roger L, Tomas F, Gire V. Mechanisms and regulation of cellular senescence. Int J Mol Sci. 2021;22(23):13173.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • James EL, Michalek RD, Pitiyage GN, de Castro AM, Vignola KS, Jones J, et al. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J Proteome Res. 2015;14(4):1854–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zwerschke W, Mazurek S, Stöckl P, Hütter E, Eigenbrodt E, Jansen-Dürr P. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J. 2003;376(Pt 2):403–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012;31(9):2103–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang J, Li J, Le Y, Zhou C, Zhang S, Gong Z. PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer. Am J Cancer Res. 2016;6(2):473–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)