• Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med. 1992;327:1832–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet. 1991;338:131–7.

  • Kruman II, Mouton PR, Emokpae RJ, Cutler RG, Mattson MP. Folate deficiency inhibits proliferation of adult hippocampal progenitors. Neurorep Engl. 2005;16:1055–9.

    CAS 
    Article 

    Google Scholar
     

  • Akchiche N, Bossenmeyer-Pourié C, Kerek R, Martin N, Pourié G, Koziel V, et al. Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells. FASEB J. 2012;26:3980–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Irwin RE, Pentieva K, Cassidy T, Lees-Murdock DJ, McLaughlin M, Prasad G, et al. The interplay between DNA methylation, folate and neurocognitive development. Epigenomics. 2016;8:863–79. https://doi.org/10.2217/epi-2016-0003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Matusheski N, Caffrey A, Christensen L, Mezgec S, Surendran S, Hjorth MF, et al. Diets, nutrients, genes and the microbiome: recent advances in personalised nutrition. Brit J Nutr. 2021;66:1–24.


    Google Scholar
     

  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20. https://doi.org/10.1038/nrg3354.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Irwin RE, Thakur A, O’Neill KM, Walsh CP. 5-Hydroxymethylation marks a class of neuronal gene regulated by intragenic methylcytosine levels. Genomics. 2014;104:383–92. https://doi.org/10.1016/j.ygeno.2014.08.013.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:590–607.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McKee SE, Zhang S, Chen L, Rabinowitz JD, Reyes TM. Perinatal high fat diet and early life methyl donor supplementation alter one carbon metabolism and DNA methylation in the brain. J Neurochem. 2018;145:362–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chang H, Zhang T, Zhang Z, Bao R, Fu C, Wang Z, et al. Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects. J Nutr Biochem. 2011;22:1172–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gu Y, Shen Y, Gibbs RA, Nelson DL. Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat Genet. 1996;13:109–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McConkie-Rosell A, Lachiewicz AM, Spiridigliozzi GA, Tarleton J, Schoenwald S, Phelan MC, et al. Evidence that methylation of the FMR-I locus is responsible for variable phenotypic expression of the fragile X syndrome. Am J Hum Genet. 1993;53:800–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rochtus A, Izzi B, Vangeel E, Louwette S, Wittevrongel C, Lambrechts D, et al. DNA methylation analysis of homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects. Epigenetics. 2015;10:92–101.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stolk L, Bouwland-Both MI, van Mil NH, Verbiest MMPJ, Eilers PHC, Zhu H, et al. Epigenetic profiles in children with a neural tube defect; a case–control study in two populations. PLoS ONE. 2013;8: e78462.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Amir RE, van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40:719–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24:3036–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics. 2006;1:e1-11.

    PubMed 
    Article 

    Google Scholar
     

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, Dsouza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7. https://doi.org/10.1038/nature09165.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Han H, DeCarvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26:577–90. https://doi.org/10.1016/j.ccr.2014.07.028.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barua S, Kuizon S, Chadman KK, Flory MJ, Brown W, Junaid MA. Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid. Epigenet Chromat. 2014;7:3.

    Article 
    CAS 

    Google Scholar
     

  • Veena SR, Krishnaveni GV, Srinivasan K, Wills AK, Muthayya S, Kurpad AV, et al. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10-year-old children in South India. J Nut. 2010;140:1014–22.

    CAS 
    Article 

    Google Scholar
     

  • Julvez J, Fortuny J, Mendez M, Torrent M, Ribas-Fitó N, Sunyer J. Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort. Paediatr Perinat Epidemiol. 2009;23:199–206.

    PubMed 
    Article 

    Google Scholar
     

  • Villamor E, Rifas-Shiman SL, Gillman MW, Oken E. Maternal intake of methyl-donor nutrients and child cognition at 3 years of age. Paediatr Perinat Epidemiol. 2012;26:328–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roth C, Magnus P, Schjølberg S, Stoltenberg C, Surén P, McKeague IW, et al. Folic acid supplements in pregnancy and severe language delay in children. JAMA. 2011;306:1566–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McNulty H, Rollins M, Cassidy T, Caffrey A, Marshall B, Dornan J, et al. Effect of continued folic acid supplementation beyond the first trimester of pregnancy on cognitive performance in the child: a follow-up study from a randomized controlled trial (FASSTT Offspring Trial). BMC Med. 2019;17:1–11.

    CAS 
    Article 

    Google Scholar
     

  • Henry L-A, Cassidy T, McLaughlin M, Pentieva K, McNulty H, Walsh CP, et al. Folic acid supplementation throughout pregnancy: psychological developmental benefits for children. Acta Paediatr. 2018;107:1370–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caffrey A, McNulty H, Rollins M, Prasad G, Gaur P, Talcott JB, et al. Effects of maternal folic acid supplementation during the second and third trimesters of pregnancy on neurocognitive development in the child: an 11-year follow-up from a randomised controlled trial. BMC Med. 2021;19:73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Caffrey A, Irwin RE, McNulty H, Strain JJ, Lees-Murdock DJ, McNulty BA, et al. Gene-specific DNA methylation in newborns in response to folic acid supplementation during the second and third trimesters of pregnancy: epigenetic analysis from a randomized controlled trial. Am J Clin Nutr. 2018;107:566–75.

    PubMed 
    Article 

    Google Scholar
     

  • Irwin RE, Thursby SJ, Ondičová M, Pentieva K, McNulty H, Richmond RC, et al. A randomized controlled trial of folic acid intervention in pregnancy highlights a putative methylation-regulated control element at ZFP57. Clin Epigenet. 2019;11:1–16.

    Article 

    Google Scholar
     

  • Thursby SJ, Lobo DK, Pentieva K, Zhang SD, Irwin RE, Walsh CP. CandiMeth: powerful yet simple visualization and quantification of DNA methylation at candidate genes. GigaScience. 2020;9:1–14.

    CAS 
    Article 

    Google Scholar
     

  • Lapsley CR, Irwin R, McLafferty M, Thursby SJ, O’Neill SM, Bjourson AJ, et al. Methylome profiling of young adults with depression supports a link with immune response and psoriasis. Clin Epigenet. 2020;12:85.

    CAS 
    Article 

    Google Scholar
     

  • Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet. 2018;19:129–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    CAS 
    Article 

    Google Scholar
     

  • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Wong TH, Chiu WZ, Breedveld GJ, Li KW, Verkerk AJMH, Hondius D, et al. PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. Brain. 2014;137:1361–73.

    PubMed 
    Article 

    Google Scholar
     

  • Armendáriz BG, Bribian A, Pérez-Martínez E, Martínez A, de Castro F, Soriano E, et al. Expression of Semaphorin 4F in neurons and brain oligodendrocytes and the regulation of oligodendrocyte precursor migration in the optic nerve. Mol Cell Neurosci. 2012;49:54–67. https://doi.org/10.1016/j.mcn.2011.09.003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rieke DT, Ochsenreither S, Klinghammer K, Seiwert TY, Klauschen F, Tinhofer I, et al. Methylation of RAD51B, XRCC3 and other homologous recombination genes is associated with expression of immune checkpoints and an inflammatory signature in squamous cell carcinoma of the head and neck, lung and cervix. Oncotarget. 2016;7:75379–93.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hosokawa M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules. 2008;13:412–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin S, Lee YK, Lim YC, Zheng Z, Lin XM, Ng DPY, et al. Global DNA hypermethylation in down syndrome placenta. PLoS Genet. 2013;9:66.


    Google Scholar
     

  • Rhee I, Bachman KE, Park BH, Jair K-W, Yen R-WC, Schuebel KE, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416:552–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Neri F, Krepelova A, Incarnato D, Maldotti M, Parlato C, Galvagni F, et al. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell. 2013;155:121–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine D 1 receptor signaling in striatal neurons. Front Neuroanat. 2011;5:1–10.

    Article 
    CAS 

    Google Scholar
     

  • O’Neill KM, Irwin RE, Mackin SJ, Thursby SJ, Thakur A, Bertens C, et al. Depletion of DNMT1 in differentiated human cells highlights key classes of sensitive genes and an interplay with polycomb repression. Epigenet Chromat. 2018;11:1–21. https://doi.org/10.1186/s13072-018-0182-4.

    CAS 
    Article 

    Google Scholar
     

  • Spiers H, Hannon E, Schalkwyk LC, Smith R, Wong CCY, O’Donovan MC, et al. Methylomic trajectories across human fetal brain development. Genome Res. 2015;25:338–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Joubert BR, den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016;7:10577.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Richmond RC, Sharp GC, Herbert G, Atkinson C, Taylor C, Bhattacharya S, et al. The long-term impact of folic acid in pregnancy on offspring DNA methylation: follow-up of the Aberdeen Folic Acid Supplementation Trial (AFAST). Int J Epidemiol. 2018;6:66.


    Google Scholar
     

  • Cooper WN, Khulan B, Owens S, Elks CE, Seidel V, Prentice AM, et al. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J. 2012;26:1782–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, et al. Periconceptional maternal folic acid use of 400 µg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS ONE. 2009;4:e7845.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Smith DEC, Hornstra JM, Kok RM, Blom HJ, Smulders YM. Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism. Clin Chem Lab Med. 2013;51:1643–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Christensen KE, Mikael LG, Leung KY, Lévesque N, Deng L, Wu Q, et al. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am J Clin Nutr. 2015;101:646–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chatzi L, Papadopoulou E, Koutra K, Roumeliotaki T, Georgiou V, Stratakis N, et al. Effect of high doses of folic acid supplementation in early pregnancy on child neurodevelopment at 18 months of age: the mother-child cohort “Rhea” study in Crete, Greece. Public Health Nutr. 2012;15:1728–36.

    PubMed 
    Article 

    Google Scholar
     

  • Roth TL, Sweatt JD. Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm Behav. 2011;59:315–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagashima S, Yagyu H, Takahashi N, Kurashina T, Takahashi M, Tsuchita T, et al. Depot-specific expression of lipolytic genes in human adipose tissues–association among CES1 expression, triglyceride lipase activity and adiposity. J Atherosclerosis Thrombosis. 2011;18:190–9.

    CAS 
    Article 

    Google Scholar
     

  • Marrades MP, González-Muniesa P, Martínez JA, Moreno-Aliaga MJ. A dysregulation in CES1, APOE and other lipid metabolism-related genes is associated to cardiovascular risk factors linked to obesity. Obes Facts. 2010;3:312–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pottier C, Baker M, Dickson DW, Rademakers R. PRKAR1B mutations are a rare cause of FUS negative neuronal intermediate filament inclusion disease. Brain. 2015;138: e357.

    PubMed 
    Article 

    Google Scholar
     

  • Wilson LE, Xu Z, Harlid S, White AJ, Troester MA, Sandler DP, et al. Alcohol and DNA methylation: an epigenome-wide association study in blood and normal breast tissue. Am J Epidemiol. 2019;188:1055–65.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Czamara D, Eraslan G, Page CM, Lahti J, Lahti-Pulkkinen M, Hämäläinen E, et al. Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns. Nat Commun. 2019;10:1–18.

    CAS 
    Article 

    Google Scholar
     

  • Horani A, Druley TE, Zariwala MA, Patel AC, Levinson BT, van Arendonk LG, et al. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2012;91:685–93. https://doi.org/10.1016/j.ajhg.2012.08.022.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goetz SC, Ocbina PJR, Anderson KV. The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol. 2009;94:199–222.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123:499–503.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP. Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol. 2004;270:393–410.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vogel TW, Carter CS, Abode-Iyamah K, Zhang Q, Robinson S. The role of primary cilia in the pathophysiology of neural tube defects. Neurosurg Focus. 2012;33:E2.

    PubMed 
    Article 

    Google Scholar
     

  • Guo J, Higginbotham H, Li J, Nichols J, Hirt J, Ghukasyan V, et al. Developmental disruptions underlying brain abnormalities in ciliopathies. Nat Commun. 2015;6:7857.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amador-Arjona A, Elliott J, Miller A, Ginbey A, Pazour GJ, Enikolopov G, et al. Primary cilia regulate proliferation of amplifying progenitors in adult hippocampus: implications for learning and memory. J Neurosci. 2011;31:9933–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science. 2010;329:444–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem. 2010;285:26114–20. https://doi.org/10.1074/jbc.M109.089433.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McNulty B, McNulty H, Marshall B, Ward M, Molloy AM, Scott JM, et al. Impact of continuing folic acid after the first trimester of pregnancy: findings of a randomized trial of folic acid supplementation in the second and third trimesters. Am J Clin Nutr. 2013;98:92–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boks MP, Houtepen LC, Xu Z, He Y, Ursini G, Maihofer AX, et al. Genetic vulnerability to DUSP22 promoter hypermethylation is involved in the relation between in utero famine exposure and schizophrenia. npj Schizophrenia. 2018;4:66.

    Article 
    CAS 

    Google Scholar
     

  • Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry. 2019;9:47.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Assenov Y, Müller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11:1138–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davis AS, Du P, Bilke S, Triche T, Bootwalla M, Davis MS. Package ‘methylumi’; 2021.

  • Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29:189–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wettenhall J, Mccarthy D, Wu D, Shi W. Package ‘limma’; 2021.

  • Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005;15:1451–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mackin SJ, O’Neill KM, Walsh CP. Comparison of DNMT1 inhibitors by methylome profiling identifies unique signature of 5-aza-2′deoxycytidine. Epigenomics. 2018;10:1085–101.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moskvina V, O’Dushlaine C, Purcell S, Craddock N, Holmans P, O’Donovan MC. Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study. Genet Epidemiol. 2011;35:861–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wilkinson LS, Davies W, Isles AR. Genomic imprinting effects on brain development and function. Nat Rev Neurosci. 2007;8:832–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, et al. Paternal imprints. Nat Rev. 2009;15:547–57.


    Google Scholar
     

  • Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A, et al. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet. 2011;20:4025–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Faubel R, Westendorf C, Bodenschatz E, Eichele G. Cilia-based flow network in the brain ventricles. Science. 2016;353:176–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pérez-Torres S, Miró X, Palacios JM, Cortés R, Puigdoménech P, Mengod G. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat. 2000;20:349–74.

    PubMed 
    Article 

    Google Scholar
     

  • Zhang F, Hatziioannou T, Perez-Caballero D, Derse D, Bieniasz PD. Antiretroviral potential of human tripartite motif-5 and related proteins. Virology. 2006;353:396–409.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rajsbaum R, Versteeg GA, Schmid S, Maestre AM, Belicha-Villanueva A, Martínez-Romero C, et al. Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKε kinase-mediated antiviral response. Immunity. 2014;40:880–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roifman M, Brunner H, Lohr J, Mazzeu J, Chitayat D. Autosomal dominant Robinow syndrome summary diagnosis suggestive findings; 2019.

  • Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, et al. The Rad51 Paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol. 2000;20:6476–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li A, Jiao X, Munier FL, Schorderet DF, Yao W, Iwata F, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet. 2004;74:817–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nakano M, Kelly EJ, Rettie AE. Expression and characterization of CYP4V2 as a fatty acid omega-hydroxylase. Drug Metab Disposit. 2009;37:2119–22.

    CAS 
    Article 

    Google Scholar
     

  • Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res. 2008;14:7593–603.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cohen RI, Rottkamp DM, Maric D, Barker JL, Hudson LD. A role for semaphorins and neuropilins in oligodendrocyte guidance. J Neurochem. 2003;85:1262–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)