• Erdmann F, Kaatsch P, Grabow D, Spix C (2020) German Childhood Cancer Registry – Annual Report 2019 (1980-2018)


    Google Scholar
     

  • Rasche M, Zimmermann M, Borschel L, Bourquin J-P, Dworzak M, Klingebiel T et al (2018) Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia 32(10):2167–2177

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwarzer A, Emmrich S, Schmidt F, Beck D, Ng M, Reimer C et al (2017) The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun 8(1):218

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bolouri H, Farrar JE, Triche TJ, Ries RE, Lim EL, Alonzo TA et al (2018) The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med 24(1):103–112

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loewer S, Cabili MN, Guttman M, Loh Y-H, Thomas K, Park IH et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ly H, Blackburn EH, Parslow TG (2003) Comprehensive structure-function analysis of the core domain of human telomerase RNA. Mol Cell Biol 23(19):6849–6856

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gil N, Ulitsky I (2020) Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 21(2):102–117

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 14(11):R131

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 5(8):e1000617

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xiang J-F, Yin Q-F, Chen T, Zhang Y, Zhang X-O, Wu Z et al (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24(5):513–531

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA et al (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M et al (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539(7629):452–455

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gil N, Ulitsky I (2018) Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst 7(5):537–547.e3

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR (2009) Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A 106(43):18321–18326

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hainer SJ, Pruneski JA, Mitchell RD, Monteverde RM, Martens JA (2011) Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev 25(1):29–40

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grossi E, Raimondi I, Goñi E, González J, Marchese FP, Chapaprieta V et al (2020) A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nat Commun 11(1):936

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K et al (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9(7):e1003588

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ariel F, Lucero L, Christ A, Mammarella MF, Jegu T, Veluchamy A et al (2020) R-Loop Mediated trans action of the APOLO long noncoding RNA. Mol Cell 77(5):1055–1065.e4

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Morán I, Akerman I, van de Bunt M, Xie R, Benazra M, Nammo T et al (2012) Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 16(4):435–448

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhou S, Yu X, Wang M, Meng Y, Song D, Yang H et al (2021) Long non-coding RNAs in pathogenesis of neurodegenerative diseases. Front Cell Dev Biol 9:719247

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ng M, Heckl D, Klusmann J-H (2019) The regulatory roles of long noncoding RNAs in acute myeloid leukemia. Front Oncol 9:570

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu Z, Gao S, Zhao X, Chen J, Keyvanfar K, Feng X et al (2019) Long noncoding RNAs of single hematopoietic stem and progenitor cells in healthy and dysplastic human bone marrow. Haematologica 104(5):894–906

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q et al (2014) Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15(4):507–522

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory. Mol Cancer 14:184

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32(6):473–480

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Venkatraman A, He XC, Thorvaldsen JL, Sugimura R, Perry JM, Tao F et al (2013) Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500(7462):345–349

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou J, Xu J, Zhang L, Liu S, Ma Y, Wen X et al (2019) Combined single-cell profiling of lncRNAs and functional screening reveals that H19 is pivotal for embryonic hematopoietic stem cell development. Cell Stem Cell 24(2):285–298.e5

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Zhang T-J, Zhou J-D, Zhang W, Lin J, Ma J-C, Wen X-M et al (2018) H19 overexpression promotes leukemogenesis and predicts unfavorable prognosis in acute myeloid leukemia. Clin Epigenetics 10:47

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Luo M, Jeong M, Sun D, Park HJ, Rodriguez BAT, Xia Z et al (2015) Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 16(4):426–438

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M et al (2009) A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 113(11):2526–2534

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu W, Yuan B, Flygare J, Lodish HF (2011) Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 25(24):2573–2578

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gomez JA, Wapinski OL, Yang YW, Bureau J-F, Gopinath S, Monack DM et al (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152(4):743–754

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Collier SP, Collins PL, Williams CL, Boothby MR, Aune TM (2012) Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol 189(5):2084–2088

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Beck D, Thoms JAI, Palu C, Herold T, Shah A, Olivier J et al (2018) A four-gene LincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients. Leukemia 32(2):263–272

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Xing C, Hu X, Xie F, Yu Z, Li H, Zhou B et al (2015) Long non-coding RNA HOTAIR modulates c-KIT expression through sponging miR-193a in acute myeloid leukemia. FEBS Lett 589(15):1981–1987

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Gao S, Zhou B, Li H, Huang X, Wu Y, Xing C et al (2018) Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15. Exp Hematol 67:32–40.e3

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451(7175):202–206

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tan Z, Zhu K, Yin Y, Luo Z (2021) Long non-coding RNA ANRIL is a potential indicator of disease progression and poor prognosis in acute myeloid leukemia. Mol Med Rep 23(2):112.

  • Sun J, Li W, Sun Y, Yu D, Wen X, Wang H et al (2014) A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies. Nucleic Acids Res 42(15):9588–9601

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L et al (2010) Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 95(3):415–423

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Xu Q, Simpson S-E, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102(3):972–980

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Pashaiefar H, Izadifard M, Yaghmaie M, Montazeri M, Gheisari E, Ahmadvand M et al (2018) Low expression of long noncoding RNA IRAIN is associated with poor prognosis in non-M3 acute myeloid leukemia patients. Genet Test Mol Biomarkers 22(5):288–294

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ng M, Verboon L, Issa H et al (2021) Myeloid leukemia vulnerabilities at CTCF-enriched long noncoding RNA loci, PREPRINT (Version 1) available at Research Square

  • von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J, Betts DR et al (2010) Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol Off J Am Soc Clin Oncol 28(16):2682–2689

    Article 
    CAS 

    Google Scholar
     

  • Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y et al (2019) HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell 36(6):645–659.e8

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Porcù E, Benetton M, Bisio V, Da Ros A, Tregnago C, Borella G et al (2021) The long non-coding RNA CDK6-AS1 overexpression impacts on acute myeloid leukemia differentiation and mitochondrial dynamics. iScience 24(11):103350

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sun M-D, Zheng Y-Q, Wang L-P, Zhao H-T, Yang S (2018) Long noncoding RNA UCA1 promotes cell proliferation, migration and invasion of human leukemia cells via sponging miR-126. Eur Rev Med Pharmacol Sci 22(8):2233–2245

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang Y, Li E, Zhang H, Zhang L, Tang Y, Wanyan Y (2020) Silencing of lncRNA UCA1 curbs proliferation and accelerates apoptosis by repressing SIRT1 signals by targeting miR-204 in pediatric AML. J Biochem Mol Toxicol 34(3):e22435

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Li JJ, Chen XF, Wang M, Zhang PP, Zhang F, Zhang JJ (2020) Long non-coding RNA UCA1 promotes autophagy by targeting miR-96-5p in acute myeloid leukaemia. Clin Exp Pharmacol Physiol 47(5):877–885

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Li J, Wang M, Chen X (2020) Long non-coding RNA UCA1 modulates cell proliferation and apoptosis by regulating miR-296-3p/Myc axis in acute myeloid leukemia. Cell Cycle 19(12):1454–1465

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Liu Y, Xu X (2018) Knockdown of LncRNA-UCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway. J Cell Biochem 119(7):6296–6308

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Emmrich S, Streltsov A, Schmidt F, Thangapandi VR, Reinhardt D, Klusmann J-H (2014) LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol Cancer 13:171

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lyu Y, Lou J, Yang Y, Feng J, Hao Y, Huang S et al (2017) Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p53-dependent and -independent pathways. Leukemia 31(12):2543–2551

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M et al (2010) CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 34(2):148–153

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Xue H, Gao H, Xia H, Li S, Li N, Duan Y et al (2021) Prognostic significance of long non coding maternally expressed gene 3 in pediatric acute myeloid leukemia. Medicine (Baltimore) 100(35):e26959

    CAS 
    Article 

    Google Scholar
     

  • Al-Kershi S, Bhayadia R, Ng M, Verboon L, Emmrich S, Gack L et al (2019) The stem cell-specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia. Blood Adv 3(24):4252–4263

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fang X, Pan X, Mai H, Yuan X, Liu S, Wen F (2021) LINC00998 functions as a novel tumor suppressor in acute myeloid leukemia via regulating the ZFP36 ring finger protein/mammalian target of rapamycin complex 2 axis. Bioengineered 12(2):10363–10372

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S et al (2021) Development of siRNA-loaded lipid nanoparticles targeting long non-coding RNA LINC01257 as a novel and safe therapeutic approach for t(8;21) pediatric acute myeloid leukemia. Pharmaceutics 13(10):1681

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xue H, Gao H, Xia H, Li S, Li N, Gao C et al (2021) IncRNA MVIH correlates with disease features, predicts treatment response and survival in pediatric acute myeloid leukemia. J Clin Lab Anal 35(4):e23739

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lei W, Lin J, Liu F, Chen N (2021) Long noncoding RNA GAS6 antisense RNA1 silencing attenuates the tumorigenesis of acute myeloid leukemia cells through targeting microRNA-370-3p/Tetraspanin3 axis. Clin Hemorheol Microcirc 78(1):69–81

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Sheng H, Zhang J, Ma Y, Zhang Y, Dai Y, Jiang R (2021) lncRNA FBXL19-AS1 is a diagnosis biomarker for paediatric patients with acute myeloid leukemia. J Gene Med 23(3):e3317

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wang X, Li W, Chen Y, Zhou L (2021) Long non-coding RNA SNHG14 affects the proliferation and apoptosis of childhood acute myeloid leukaemia cells by modulating the miR-193b-3p/MCL1 axis. Mol Med Rep 23(2):90

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Dou B, Jiang Z, Chen X, Wang C, Wu J, An J et al (2020) Oncogenic long noncoding RNA DARS-AS1 in childhood acute myeloid leukemia by binding to microRNA-425. Technol Cancer Res Treat 19:1533033820965580

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang X, Yang L, Xu G (2020) Silencing of long noncoding RNA TUG1 inhibits viability and promotes apoptosis of acute myeloid leukemia cells by targeting microRNA-221-3p/KIT axis. Clin Hemorheol Microcirc 76(3):425–437

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ma L, Wang Y-Y, Jiang P (2020) LncRNA LINC00909 promotes cell proliferation and metastasis in pediatric acute myeloid leukemia via miR-625-mediated modulation of Wnt/β-catenin signaling. Biochem Biophys Res Commun 527(3):654–661

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wang W-T, Chen T-Q, Zeng Z-C, Pan Q, Huang W, Han C et al (2020) The lncRNA LAMP5-AS1 drives leukemia cell stemness by directly modulating DOT1L methyltransferase activity in MLL leukemia. J Hematol Oncol 13(1):78

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang J, Liu Z-H, Yu L-J (2019) Long non-coding RNA LINC00641 promotes cell growth and migration through modulating miR-378a/ZBTB20 axis in acute myeloid leukemia. Eur Rev Med Pharmacol Sci 23(17):7498–7509

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan X, Wen X, Xiao J, An X, Yu J, Guo Y (2019) Lnc-SOX6-1 upregulation correlates with poor risk stratification and worse treatment outcomes, and promotes cell proliferation while inhibits apoptosis in pediatric acute myeloid leukemia. Int J Lab Hematol 41(2):234–241

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • El-Khazragy N, Elayat W, Matbouly S, Seliman S, Sami A, Safwat G et al (2019) The prognostic significance of the long non-coding RNAs “CCAT1, PVT1” in t(8;21) associated acute myeloid leukemia. Gene 707:172–177

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Fernando TR, Contreras JR, Zampini M, Rodriguez-Malave NI, Alberti MO, Anguiano J et al (2017) The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia. Mol Cancer 16(1):126

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Morenos L, Chatterton Z, Ng JL, Halemba MS, Parkinson-Bates M, Mechinaud F et al (2014) Hypermethylation and down-regulation of DLEU2 in paediatric acute myeloid leukaemia independent of embedded tumour suppressor miR-15a/16-1. Mol Cancer 13:123

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hughes JM, Legnini I, Salvatori B, Masciarelli S, Marchioni M, Fazi F et al (2015) C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 6(21):18534–18544

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Emmrich S, Rasche M, Schöning J, Reimer C, Keihani S, Maroz A et al (2014) miR-99a/100~125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev 28(8):858–874

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alejo-Valle O, Weigert K, Bhayadia R, Ng M, Issa H et al (2022) The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis. Blood 139(5):651–665

  • Guo S, Li B, Xu X, Wang W, Wang S, Lv T et al (2020) Construction of a 14-lncRNA risk score system predicting survival of children with acute myelocytic leukemia. Exp Ther Med 20(2):1521–1531

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ayton PM, Cleary ML (2003) Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 17(18):2298–2307

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao H, Zhang X, Frazão JB, Condino-Neto A, Newburger PE (2013) HOX antisense lincRNA HOXA-AS2 is an apoptosis repressor in all trans retinoic acid treated NB4 promyelocytic leukemia cells. J Cell Biochem 114(10):2375–2383

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pui CH, Raimondi SC, Srivastava DK, Tong X, Behm FG, Razzouk B et al (2000) Prognostic factors in infants with acute myeloid leukemia. Leukemia 14(4):684–687

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)