Cell culture

Epithelial cells were isolated from urine samples according to the protocol described previously [10]. Briefly, 100 mL of urine sample was collected, transferred into a 50-mL conical tube and centrifuged at 400×g for 10 min at room temperature. The supernatant was removed; the cell pellet was washed twice with 25 mL of PBS supplemented with penicillin (100 U/mL), streptomycin (100 µg/mL), amphotericin B (0.25 µg/mL) and centrifuged again. The supernatant was discarded, and the cell pellet was suspended in Renal Epithelial Cell Growth Medium (REGM BulletKit, Lonza) and plated on gelatine-coated cell culture plates (Attachment Factor Protein, Life Technologies). After reaching 90% confluency, cells were passaged with TrypLE Select (Life Technologies) into a new well for further expansion.

Induced pluripotent stem cells were cultured according to Drozd et al. [9].

Reactive oxygen species detection

A cellular reactive oxygen species (ROS) assay kit (Abcam, ab186027) was used to determine ROS levels, according to manufacturer’s protocol. Statistical analysis was performed using GraphPrism 5 software. Comparisons among groups were performed using One-way ANOVA with Dunnett’s multiple comparison test. Error bars indicate SD (n = 3). P < 0.05 was considered statistically significant.

Reprogramming of urinary epithelial cells into iPSc and following differentiation

IPS cells were generated as described previously [9]. Urinary epithelial cells were seeded at a density of 8 × 104 per well of a six-well plate coated with Geltrex basement matrix. Cells were maintained in REGM medium. After overnight incubation, the culture medium was replaced with a fresh one, and cells were transfected with 2 μg of episomal plasmids (Epi5™ Episomal iPSC Reprogramming Kit, Life Technologies), 400 ng of each: pCE-hOct3/4, pCE-hSK pCE-hUL, pCE-mp53DD, pCXB-EBNA1 and 1 μg of an additional plasmid to increase efficiency—pCE-mCherry-miR302/367. FuGENE HD transfection reagent (Promega), at a 3:1 reagent-to-DNA ratio, was diluted in pre-warmed Opti-MEM medium and incubated for 5 min at room temperature. Plasmid DNA was added to the mixture up to a total volume of 100 μL and incubated for 30 min. The solution of the complexes was added in a dropwise manner directly to cells grown in one well of a six-well plate in 2 mL of medium.

The next day, the culture medium was replaced with TeSR-E7 medium (StemCell Technologies), and the transfection was repeated as previously. TeSR-E7 medium was changed every day up to two weeks post-transfection. On day 15, the culture medium was changed to Essential 8. The medium was replaced daily for the next two weeks. Within twenty to thirty days post-transfection, iPSCs expanded to a size appropriate for transfer. Colonies were transferred onto new Geltrex-coated culture dishes and further propagated in Essential 8 medium.

Finally, differentiation of iPS cells into three germ layers was conducted as described previously [9].

Immunofluorescence analysis

For the immunocytochemical analyses, iPSc or other cells were seeded on Geltrex-coated glass coverslips. Cells were fixed in 4% paraformaldehyde in PBS for 20 min (iPSc) or 15 min (differentiated cells) and permeabilized with 0.25% (iPSc) or 0.1% (differentiated cells) Triton X-100 in PBS for 10 min at room temperature. Next, preparation was performed as already described [9] (Table 1).

Table 1 Antibodies used for immunocytochemical staining

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Disclaimer:

This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

Click here for Source link (https://www.biomedcentral.com/)