• Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393(10177):1240–53. https://doi.org/10.1016/S0140-6736(18)32552-2.

    Article 
    PubMed 

    Google Scholar
     

  • Luvero D, Plotti F, Aloisia A, et al. Ovarian cancer relapse: from the latest scientific evidence to the best practice. Crit Rev Oncol Hematol. 2019;140(May):28–38. https://doi.org/10.1016/j.critrevonc.2019.05.014.

    Article 
    PubMed 

    Google Scholar
     

  • Diaz-Padilla I, Duran I, Clarke BA, Oza AM. Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer. Cancer Treat Rev. 2012;38(6):767–75. https://doi.org/10.1016/j.ctrv.2012.02.001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Smolle E, Taucher V, Pichler M, Petru E, Lax S, Haybaeck J. Targeting signaling pathways in epithelial ovarian cancer. Int J Mol Sci. 2013;14(5):9536–55. https://doi.org/10.3390/ijms14059536.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghoneum A, Said N. PI3K-AKT-mTOR and NFkB pathways in ovarian cancer: implications for targeted therapeutics. Cancers (Basel). 2019;11(7). https://doi.org/10.3390/cancers11070949.

  • MacKay HJ, Eisenhauer EA, Kamel-Reid S, et al. Molecular determinants of outcome with mammalian target of rapamycin inhibition in endometrial cancer. Cancer. 2014;120(4):603–10. https://doi.org/10.1002/cncr.28414.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lin Y, Zhang R, Zhang P. Eukaryotic translation initiation factor 3 subunit D overexpression is associated with the occurrence and development of ovarian cancer. FEBS Open Bio. 2016;6(12):1201–10. https://doi.org/10.1002/2211-5463.12137.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep. 2018;19(10). https://doi.org/10.15252/embr.201845947.

  • Noske A, Lindenberg JL, Darb-Esfahani S, et al. Activation of mTOR in a subgroup of ovarian carcinomas: correlation with p-eIF-4E and prognosis. Oncol Rep. 2008;20(6):1409–17. https://doi.org/10.3892/or_00000160.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yang GF, Xie D, Liu JH, et al. Expression and amplification of eIF-5A2 in human epithelial ovarian tumors and overexpression of EIF-5A2 is a new independent predictor of outcome in patients with ovarian carcinoma. Gynecol Oncol. 2009;112(2):314–8. https://doi.org/10.1016/j.ygyno.2008.10.024.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Guan XY, Fung JMW, Ma NF, et al. Oncogenic role of eIF-5A2 in the development of ovarian cancer. Cancer Res. 2004;64(12):4197–200. https://doi.org/10.1158/0008-5472.CAN-03-3747.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang K, Wang Y, Wang Y, et al. EIF5A2 enhances stemness of epithelial ovarian cancer cells via a E2F1/KLF4 axis. Stem Cell Res Ther. 2021;12(1):1–16. https://doi.org/10.1186/s13287-021-02256-2.

    CAS 
    Article 

    Google Scholar
     

  • Benelli D, Cialfi S, Pinzaglia M, Talora C, Londei P. The translation factor eIF6 is a notch-dependent regulator of cell migration and invasion. Plos One. 2012;7(2). https://doi.org/10.1371/journal.pone.0032047.

  • Pinzaglia M, Montaldo C, Polinari D, et al. eIF6 over-expression increases the motility and invasiveness of cancer cells by modulating the expression of a critical subset of membrane-bound proteins. BMC Cancer. 2015;15(1):131. https://doi.org/10.1186/s12885-015-1106-3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anand N, Murthy S, Amann G, et al. Gene encoding protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet. 2002;31(3):301–5. https://doi.org/10.1038/ng904.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lee M-H, Choi BY, Cho Y-Y, et al. Tumor suppressor p16INK4a inhibits cancer cell growth by down-regulating eEF1A2 through a direct interaction. J Cell Sci Published online January 1. 2013. https://doi.org/10.1242/jcs.113613.

  • Spilka R, Ernst C, Mehta AK, Haybaeck J. Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett. 2013;340(1):9–21. https://doi.org/10.1016/j.canlet.2013.06.019.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shi N, Chen X, Liu R, et al. Eukaryotic elongation factors 2 promotes tumor cell proliferation and correlates with poor prognosis in ovarian cancer. Tissue Cell. 2018;53(May):53–60. https://doi.org/10.1016/j.tice.2018.05.014.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kandukuri SR, Rao J. FIGO 2013 staging system for ovarian cancer. Curr Opin Obstet Gynecol. 2015;27(1):48–52. https://doi.org/10.1097/GCO.0000000000000135.

    Article 
    PubMed 

    Google Scholar
     

  • Hao P, Yu J, Ward R, et al. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal. 2020;18(1):175. https://doi.org/10.1186/s12964-020-00607-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flavin RJ, Smyth PC, Finn SP, et al. Altered eIF6 and dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients. Mod Pathol. 2008;21(6):676–84. https://doi.org/10.1038/modpathol.2008.33.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Laios A, O’Toole S, Flavin R, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer. 2008;7:1–14. https://doi.org/10.1186/1476-4598-7-35.

    CAS 
    Article 

    Google Scholar
     

  • Ali-Fehmi R, Chatterjee M, Ionan A, et al. Analysis of the expression of human tumor antigens in ovarian cancer tissues. Cancer Biomarkers. 2009;6(1):33–48. https://doi.org/10.3233/CBM-2009-0117.

    Article 

    Google Scholar
     

  • Clement PMJ, Johansson HE, Wolff EC, Park MH. Differential expression of eIF5A-1 and eIF5A-2 in human cancer cells. FEBS J. 2006;273(6):1102–14. https://doi.org/10.1111/j.1742-4658.2006.05135.x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clement PMJ, Henderson CA, Jenkins ZA, et al. Identification and characterization of eukaryotic initiation factor 5A-2. Eur J Biochem. 2003;270(21):4254–63. https://doi.org/10.1046/j.1432-1033.2003.03806.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhao G, Zhang W, Dong P, et al. EIF5A2 controls ovarian tumor growth and metastasis by promoting epithelial to mesenchymal transition via the TGFβ pathway. Cell Biosci. 2021;11(1):1–12. https://doi.org/10.1186/s13578-021-00578-5.

    CAS 
    Article 

    Google Scholar
     

  • Liu Y, Ma L, Shangguan F, et al. LAIR-1 suppresses cell growth of ovarian cancer cell via the PI3K-AKT-mTOR pathway. Aging (Albany NY). 2020;12(16):16142–54. https://doi.org/10.18632/aging.103589.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Vui-Kee K, Mohd Dali AZH, Mohamed Rose I, Ghazali R, Jamal R, Mokhtar NM. Molecular markers associated with nonepithelial ovarian cancer in formalin-fixed, paraffin-embedded specimens by genome wide expression profiling. Kaohsiung J Med Sci. 2012;28(5):243–50. https://doi.org/10.1016/j.kjms.2011.11.007.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tomlinson VAL, Newbery HJ, Bergmann JH, et al. Expression of eEF1A2 is associated with clear cell histology in ovarian carcinomas: overexpression of the gene is not dependent on modifications at the EEF1A2 locus. Br J Cancer. 2007;96(10):1613–20. https://doi.org/10.1038/sj.bjc.6603748.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma S, Tammela J, Wang X, et al. Characterization of a putative ovarian oncogene, elongation factor 1α isolated by panninga synthetic phage display single-chain variable fragment library with cultured human ovarian cancer cells. Clin Cancer Res. 2007;13(19):5889–96. https://doi.org/10.1158/1078-0432.CCR-07-0703.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Young AM, Archibald KM, Tookman LA, et al. Failure of translation of human adenovirus mRNA in murine cancer cells can be partially overcome by L4-100K expression in vitro and in vivo. Mol Ther. 2012;20(9):1676–88. https://doi.org/10.1038/mt.2012.116.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andruska ND, Zheng X, Yang X, et al. Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression. Proc Natl Acad Sci U S A. 2015;112(15):4737–42. https://doi.org/10.1073/pnas.1403685112.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang X, Zhang S, et al. Oxidative stress mediates microcystin-LR-induced endoplasmic reticulum stress and autophagy in KK-1 cells and C57BL/6 mice ovaries. Front Physiol. 2018;9(AUG):1–15. https://doi.org/10.3389/fphys.2018.01058.

    Article 

    Google Scholar
     

  • Yuan X, Yu B, Wang Y, et al. Involvement of endoplasmic reticulum stress in Isoliquiritigenin-induced SKOV-3 cell apoptosis. Recent Pat Anticancer Drug Discov. 2013;8(2):191–9. https://doi.org/10.2174/1574892811308020007.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Aarti I, Rajesh K, Ramaiah KVA. Phosphorylation of eIF2 alpha in Sf9 cells: a stress, survival and suicidal signal. Apoptosis. 2010;15(6):679–92. https://doi.org/10.1007/s10495-010-0474-z.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hwang SY, Kim MK, Kim JC. Cloning of hHRI, human heme-regulated eukaryotic initiation factor 2α kinase: Down-regulated in epithelial ovarian cancers. Mol Cells. 2000;10(5):584–91. https://doi.org/10.1007/s10059-000-0584-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rohozinski J, Edwards CL. Does EIF2S3 Retrogene activation regulate Cancer/testis antigen expression in human cancers? Front Oncol. 2020;10(November):3–7. https://doi.org/10.3389/fonc.2020.590408.

    Article 

    Google Scholar
     

  • Ning L, Wang L, Zhang H, Jiao X, Chen D. Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review). Oncol Lett. 2020;20(4):1–1. https://doi.org/10.3892/ol.2020.11942.

    CAS 
    Article 

    Google Scholar
     

  • Caraglia M, Park MH, Wolff EC, Marra M, Abbruzzese A. eIF5A isoforms and cancer: two brothers for two functions? Amino Acids. 2013;44(1):103–9. https://doi.org/10.1007/s00726-011-1182-x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schuller AP, Wu CCC, Dever TE, Buskirk AR, Green R. eIF5A functions globally in translation elongation and termination. Mol Cell. 2017;66(2):194–205.e5. https://doi.org/10.1016/j.molcel.2017.03.003.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang FW, Guan XY, Xie D. Roles of eukaryotic initiation factor 5A2 in human cancer. Int J Biol Sci. 2013;9(10):1013–20. https://doi.org/10.7150/ijbs.7191.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saini P, Eyler DE, Green R, Dever TE. Hypusine-containing protein eIF5A promotes translation elongation. Nature. 2009;459(7243):118–21. https://doi.org/10.1038/nature08034.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbas W, Kumar A, Herbein G. The eEF1A proteins: at the crossroads of oncogenesis, apoptosis, and viral infections. Front Oncol. 2015;5(APR):1–10. https://doi.org/10.3389/fonc.2015.00075.

    Article 

    Google Scholar
     

  • Mills A, Gago F. On the need to tell apart fraternal twins eef1a1 and eef1a2, and their respective outfits. Int J Mol Sci. 2021;22(13):1–21. https://doi.org/10.3390/ijms22136973.

    CAS 
    Article 

    Google Scholar
     

  • Topisirovic I, Ruiz-Gutierrez M, Borden KLB. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res. 2004;64(23):8639–42. https://doi.org/10.1158/0008-5472.CAN-04-2677.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6(4):318–27. https://doi.org/10.1038/nrm1618.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tejada S, Lobo MVT, García-Villanueva M, et al. Eukaryotic initiation factors (eIF) 2α and 4E expression, localization, and phosphorylation in brain tumors. J Histochem Cytochem. 2009;57(5):503–12. https://doi.org/10.1369/jhc.2009.952929.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SB, Park JH, Kaevel J, Sramkova M, Weigert R, Park MH. The effect of hypusine modification on the intracellular localization of eIF5A. Biochem Biophys Res Commun. 2009;383(4):497–502. https://doi.org/10.1016/j.bbrc.2009.04.049.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tauc M, Cougnon M, Carcy R, et al. The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell Biosci. 2021;11(1):1–23. https://doi.org/10.1186/s13578-021-00733-y.

    CAS 
    Article 

    Google Scholar
     

  • Veremieva M, Kapustian L, Khoruzhenko A, Zakharychev V, Negrutskii B, El’skaya A. Independent overexpression of the subunits of translation elongation factor complex eEF1H in human lung cancer. BMC Cancer. 2014;14(1):1–9. https://doi.org/10.1186/1471-2407-14-913.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)