• Lander ES (1996) The new genomics: global views of biology. Science (80- ) 274:536–539

  • Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90:7–24.

    CAS 
    Article 

    Google Scholar
     

  • Visscher PM, Wray NR, Zhang Q, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22.

    CAS 
    Article 

    Google Scholar
     

  • Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.

    CAS 
    Article 

    Google Scholar
     

  • Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15:2759–72. https://doi.org/10.1038/s41596-020-0353-1.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Visscher PM, Hill WG, Wray NR. Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet. 2008;9(4):255–66. https://doi.org/10.1038/nrg2322.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19(9):581–90. https://doi.org/10.1038/s41576-018-0018-x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98. https://doi.org/10.1093/hmg/ddu328.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33:D514–7.

    CAS 
    Article 

    Google Scholar
     

  • Abdellaoui A, Verweij KJH, Nivard MG (2021) Geographic confounding in genome-wide association studies. bioRxiv

  • Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    CAS 
    Article 

    Google Scholar
     

  • McAllister K, Mechanic LE, Amos C, et al. Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol. 2017;186:753–61.

    Article 

    Google Scholar
     

  • Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet. 2006;7:385–94.

    CAS 
    Article 

    Google Scholar
     

  • Peterson RE, Kuchenbaecker K, Walters RK, et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell. 2019;179:589–603.

    CAS 
    Article 

    Google Scholar
     

  • Dahl A, Zaitlen N. Genetic influences on disease subtypes. Annu Rev Genomics Hum Genet. 2020;21:413–35.

    CAS 
    Article 

    Google Scholar
     

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. https://doi.org/10.1038/nature08494.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young AI. Solving the missing heritability problem. PLoS Genet. 2019;15(6):e1008222. https://doi.org/10.1371/journal.pgen.1008222.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young AI, Benonisdottir S, Przeworski M, Kong A. Deconstructing the sources of genotype-phenotype associations in humans. Science (80- ), 1400. 2019;365:1396.

  • Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12:1–11.

    Article 

    Google Scholar
     

  • Robinson MR, Kleinman A, Graff M, et al. Genetic evidence of assortative mating in humans. Nat Hum Behav. 2017;1:1–13.

    Article 

    Google Scholar
     

  • Cardon LR, Palmer LJ. Population stratification and spurious allelic association. Lancet. 2003;361(9357):598–604. https://doi.org/10.1016/S0140-6736(03)12520-2.

    Article 
    PubMed 

    Google Scholar
     

  • Privé F, Luu K, Blum MGB, McGrath JJ, Vilhjálmsson BJ. Efficient toolkit implementing best practices for principal component analysis of population genetic data. Bioinformatics. 2020;36(16):4449–57. https://doi.org/10.1093/bioinformatics/btaa520.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Zaitlen NA, Goddard ME, et al. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46:100–6. https://doi.org/10.1038/ng.2876.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet. 2021;53(7):1097–103. https://doi.org/10.1038/s41588-021-00870-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sohail M, Maier RM, Ganna A, Bloemendal A, Martin AR, Turchin MC, et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. Elife. 2019;8:e39702. https://doi.org/10.7554/eLife.39702.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGuire AL, Gabriel S, Tishkoff SA, et al. The road ahead in genetics and genomics. Nat Rev Genet. 2020:1–16.

  • Wijsman EM. The role of large pedigrees in an era of high-throughput sequencing. Hum Genet. 2012;131(10):1555–63. https://doi.org/10.1007/s00439-012-1190-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article 

    Google Scholar
     

  • Bycroft C, Freeman C, Petkova D, et al. Genome-wide genetic data on~ 500,000 UK Biobank participants. BioRxiv. 2017;166298.

  • Feliciano P, Daniels AM, Snyder LG, et al. SPARK: a US cohort of 50,000 families to accelerate autism research. Neuron. 2018;97:488–93.

    Article 

    Google Scholar
     

  • Loh P-R, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for biobank-scale datasets. Nat Genet. 2018;50(7):906–8. https://doi.org/10.1038/s41588-018-0144-6.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Consortium HR, others. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–83. https://doi.org/10.1038/ng.3643.

    CAS 
    Article 

    Google Scholar
     

  • Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590(7845):290–9. https://doi.org/10.1038/s41586-021-03205-y.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissbrod O, Hormozdiari F, Benner C, et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat Genet. 2020:1–9.

  • Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association statistics. Nat Rev Genet. 2017;18(2):117–27. https://doi.org/10.1038/nrg.2016.142.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fadista J, Manning AK, Florez JC, Groop L. The (in) famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet. 2016;24(8):1202–5. https://doi.org/10.1038/ejhg.2015.269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spain SL, Barrett JC. Strategies for fine-mapping complex traits. Hum Mol Genet. 2015;24(R1):R111–9. https://doi.org/10.1093/hmg/ddv260.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kichaev G, Yang W-Y, Lindstrom S, Hormozdiari F, Eskin E, Price AL, et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 2014;10(10):e1004722. https://doi.org/10.1371/journal.pgen.1004722.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weeks EM, Ulirsch JC, Cheng NY, et al (2020) Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. medRxiv

  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23. https://doi.org/10.1038/gim.2015.30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89:82–93.

    CAS 
    Article 

    Google Scholar
     

  • Lee S, Emond MJ, Bamshad MJ, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91:224–37.

    CAS 
    Article 

    Google Scholar
     

  • Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091.

    CAS 
    Article 

    Google Scholar
     

  • Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245.

    CAS 
    Article 

    Google Scholar
     

  • Brandes N, Linial N, Linial M. PWAS: proteome-wide association study—linking genes and phenotypes by functional variation in proteins. Genome Biol. 2020;21(1):1–22. https://doi.org/10.1186/s13059-020-02089-x.

    CAS 
    Article 

    Google Scholar
     

  • Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins Struct Funct Bioinforma. 2019;87(12):1011–20. https://doi.org/10.1002/prot.25823.

    CAS 
    Article 

    Google Scholar
     

  • Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, et al. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol. 2019;20(1):1–23. https://doi.org/10.1186/s13059-019-1835-8.

    CAS 
    Article 

    Google Scholar
     

  • Andreoletti G, Pal LR, Moult J, Brenner SE. Reports from the fifth edition of CAGI: The Critical Assessment of Genome Interpretation. Hum Mutat. 2019;40:1197–201.

    Article 

    Google Scholar
     

  • Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM. org: leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019;47(D1):D1038–43. https://doi.org/10.1093/nar/gky1151.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2018;47:D1005–12.

    Article 

    Google Scholar
     

  • Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177–86. https://doi.org/10.1016/j.cell.2017.05.038.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shohat S, Amelan A, Shifman S. Convergence and divergence in the genetics of psychiatric disorders from pathways to developmental stages. Biol Psychiatry. 2020;89(1):32–40. https://doi.org/10.1016/j.biopsych.2020.05.019.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell. 2016;167(7):1853–66. https://doi.org/10.1016/j.cell.2016.11.038.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ursu O, Neal JT, Shea E, et al (2020) Massively parallel phenotyping of variant impact in cancer with Perturb-seq reveals a shift in the spectrum of cell states induced by somatic mutations. bioRxiv

  • Consortium EP, others. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57.

    Article 

    Google Scholar
     

  • Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5. https://doi.org/10.1038/ng.2653.

    CAS 
    Article 

    Google Scholar
     

  • Rozenblatt-Rosen O, Stubbington MJT, Regev A, Teichmann SA. The Human Cell Atlas: from vision to reality. Nat News. 2017;550:451.

    CAS 
    Article 

    Google Scholar
     

  • Paaby AB, Rockman MV. The many faces of pleiotropy. Trends Genet. 2013;29(2):66–73. https://doi.org/10.1016/j.tig.2012.10.010.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ge T, Chen C-Y, Neale BM, et al. Phenome-wide heritability analysis of the UK Biobank. PLoS Genet. 2017;13:e1006711.

    Article 

    Google Scholar
     

  • Lello L, Avery SG, Tellier L, Vazquez AI, de los Campos G, Hsu SDH. Accurate genomic prediction of human height. Genetics. 2018;210(2):477–97. https://doi.org/10.1534/genetics.118.301267.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moldovan A, Waldman YY, Brandes N, Linial M. Body mass index and birth weight improve polygenic risk score for type 2 diabetes. J Pers Med. 2021;11. https://doi.org/10.3390/jpm11060582.

  • Chung W, Chen J, Turman C, et al. Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes. Nat Commun. 2019;10:1–11.

    Article 

    Google Scholar
     

  • Mostafavi H, Harpak A, Agarwal I, Conley D, Pritchard JK, Przeworski M. Variable prediction accuracy of polygenic scores within an ancestry group. Elife. 2020;9:e48376. https://doi.org/10.7554/eLife.48376.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bareinboim E, Pearl J. Causal inference and the data-fusion problem. Proc Natl Acad Sci. 2016;113:7345–52.

    CAS 
    Article 

    Google Scholar
     

  • Daly AK. Pharmacogenetics: a general review on progress to date. Br Med Bull. 2017;124:65–79.

    CAS 
    PubMed 

    Google Scholar
     

  • Gabai-Kapara E, Lahad A, Kaufman B, et al. Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc Natl Acad Sci. 2014;111:14205–10.

    CAS 
    Article 

    Google Scholar
     

  • Lencz T, Backenroth D, Granot-Hershkovitz E, et al (2021) Utility of polygenic embryo screening for disease depends on the selection strategy. bioRxiv 2011–2020

  • Turley P, Meyer MN, Wang N, Cesarini D, Hammonds E, Martin AR, et al. Problems with using polygenic scores to select embryos. N Engl J Med. 2021;385(1):78–86. https://doi.org/10.1056/NEJMsr2105065.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, et al. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register. Biol Psychiatry. 2018;83(6):492–8. https://doi.org/10.1016/j.biopsych.2017.08.017.

    Article 
    PubMed 

    Google Scholar
     

  • Visscher PM, Wray NR. Concepts and misconceptions about the polygenic additive model applied to disease. Hum Hered. 2015;80(4):165–70. https://doi.org/10.1159/000446931.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Selita F, Kovas Y. Genes and Gini: what inequality means for heritability. J Biosoc Sci. 2019;51(1):18–47. https://doi.org/10.1017/S0021932017000645.

    Article 
    PubMed 

    Google Scholar
     

  • Polderman TJC, Benyamin B, De Leeuw CA, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.

    CAS 
    Article 

    Google Scholar
     

  • Mayhew JA, Meyre D. Assessing the heritability of complex traits in humans: methodological challenges and opportunities. Curr Genomics. 2017;18:332–40.

    CAS 
    Article 

    Google Scholar
     

  • Yang J, Zeng J, Goddard ME, et al. Concepts, estimation and interpretation of SNP-based heritability. Nat Genet. 2017;49:1304.

    CAS 
    Article 

    Google Scholar
     

  • Young AI, Frigge ML, Gudbjartsson DF, et al. Relatedness disequilibrium regression estimates heritability without environmental bias. Nat Genet. 2018;50:1304–10. https://doi.org/10.1038/s41588-018-0178-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci. 2012;109:1193–8.

    CAS 
    Article 

    Google Scholar
     

  • Speed D, Holmes J, Balding DJ. Evaluating and improving heritability models using summary statistics. Nat Genet. 2020;52(4):458–62. https://doi.org/10.1038/s41588-020-0600-y.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Speed D, Cai N, Johnson MR, et al. Reevaluation of SNP heritability in complex human traits. Nat Genet. 2017;49(7):986–92. https://doi.org/10.1038/ng.3865.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Génin E. Missing heritability of complex diseases: case solved? Hum Genet. 2020;139(1):103–13. https://doi.org/10.1007/s00439-019-02034-4.

    Article 
    PubMed 

    Google Scholar
     

  • Wainschtein P, Jain DP, Yengo L, et al. Recovery of trait heritability from whole genome sequence data. BioRxiv. 2019;588020.

  • Schoech AP, Jordan DM, Loh P-R, Gazal S, O’Connor LJ, Balick DJ, et al. Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection. Nat Commun. 2019;10(1):1–10. https://doi.org/10.1038/s41467-019-08424-6.

    CAS 
    Article 

    Google Scholar
     

  • Flint J, Eskin E. Genome-wide association studies in mice. Nat Rev Genet. 2012;13:807–17.

    CAS 
    Article 

    Google Scholar
     

  • Wang Q, Dhindsa RS, Carss K, Harper AR, Nag A, Tachmazidou I, et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature. 2021;597(7877):527–32. https://doi.org/10.1038/s41586-021-03855-y.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szustakowski JD, Balasubramanian S, Kvikstad E, Khalid S, Bronson PG, Sasson A, et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat Genet. 2021;53(7):942–8. https://doi.org/10.1038/s41588-021-00885-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 2008;4(2):e1000008. https://doi.org/10.1371/journal.pgen.1000008.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore JH, Williams SM. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays. 2005;27:637–46.

    CAS 
    Article 

    Google Scholar
     

  • Mäki-Tanila A, Hill WG. Influence of gene interaction on complex trait variation with multilocus models. Genetics. 2014;198(1):355–67. https://doi.org/10.1534/genetics.114.165282.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Li X, Zhang S, Snyder M. Gene-environment interaction in the era of precision medicine. Cell. 2019;177(1):38–44. https://doi.org/10.1016/j.cell.2019.03.004.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vivian-Griffiths T, Baker E, Schmidt KM, et al. Predictive modeling of schizophrenia from genomic data: comparison of polygenic risk score with kernel support vector machines approach. Am J Med Genet Part B Neuropsychiatr Genet. 2019;180:80–5.

    Article 

    Google Scholar
     

  • Bellot P, de Los CG, Pérez-Enciso M. Can deep learning improve genomic prediction of complex human traits? Genetics. 2018;210(3):809–19. https://doi.org/10.1534/genetics.118.301298.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azodi CB, McCarren A, Roantree M, et al (2019) Benchmarking algorithms for genomic prediction of complex traits. bioRxiv 614479

  • Upton A, Trelles O, Cornejo-Garcia JA, Perkins JR. High-performance computing to detect epistasis in genome scale data sets. Brief Bioinform. 2016;17(3):368–79. https://doi.org/10.1093/bib/bbv058.

    Article 
    PubMed 

    Google Scholar
     

  • Domingo J, Baeza-Centurion P, Lehner B. The causes and consequences of genetic interactions (epistasis). Annu Rev Genomics Hum Genet. 2019;20(1):433–60. https://doi.org/10.1146/annurev-genom-083118-014857.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Young AI, Durbin R. Estimation of epistatic variance components and heritability in founder populations and crosses. Genetics. 2014;198(4):1405–16. https://doi.org/10.1534/genetics.114.170795.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guindo-Mart’inez M, Amela R, Bonàs-Guarch S, et al (2020) The impact of non-additive genetic associations on age-related complex diseases. bioRxiv

  • Brandes N, Linial N, Linial M. Genetic association studies of alterations in protein function expose recessive effects on cancer predisposition. Sci Rep. 2021;11:14901. https://doi.org/10.1038/s41598-021-94252-y.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter DJ. Gene–environment interactions in human diseases. Nat Rev Genet. 2005;6:287–98.

    CAS 
    Article 

    Google Scholar
     

  • Maeda Y, Takeda K (2019) Host–microbiota interactions in rheumatoid arthritis. Exp & Mol Med 51:1–6

  • Bjornevik K, Cortese M, Healy BC, et al (2022) Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science (80- )

  • Gauderman WJ, Mukherjee B, Aschard H, Hsu L, Lewinger JP, Patel CJ, et al. Update on the state of the science for analytical methods for gene-environment interactions. Am J Epidemiol. 2017;186(7):762–70. https://doi.org/10.1093/aje/kwx228.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerin M, Marchini J. Inferring gene-by-environment interactions with a Bayesian whole-genome regression model. Am J Hum Genet. 2020;107(4):698–713. https://doi.org/10.1016/j.ajhg.2020.08.009.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerin M, Marchini J. A non-linear regression method for estimation of gene-environment heritability. Bioinformatics. 2020.

  • Pirastu N, Cordioli M, Nandakumar P, Mignogna G, Abdellaoui A, Hollis B, et al. Genetic analyses identify widespread sex-differential participation bias. Nat Genet. 2021;53(5):663–71. https://doi.org/10.1038/s41588-021-00846-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissbrod O, Flint J, Rosset S. Estimating SNP-based heritability and genetic correlation in case-control studies directly and with summary statistics. Am J Hum Genet. 2018;103:89–99.

    CAS 
    Article 

    Google Scholar
     

  • Girirajan S, Campbell CD, Eichler EE. Human copy number variation and complex genetic disease. Annu Rev Genet. 2011;45:203–26. https://doi.org/10.1146/annurev-genet-102209-163544.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet. 2013;14(2):125–38. https://doi.org/10.1038/nrg3373.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Payer LM, Burns KH. Transposable elements in human genetic disease. Nat Rev Genet. 2019;20(12):760–72. https://doi.org/10.1038/s41576-019-0165-8.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stancu MC, Van Roosmalen MJ, Renkens I, et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun. 2017;8:1–13.

    Article 

    Google Scholar
     

  • Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13:278–89. https://doi.org/10.1016/j.gpb.2015.08.002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi Y, Chan AP, Kirkness E, Telenti A, Schork NJ. Comparison of phasing strategies for whole human genomes. PLoS Genet. 2018;14(4):e1007308. https://doi.org/10.1371/journal.pgen.1007308.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorpe J, Osei-Owusu IA, Avigdor BE, et al. Mosaicism in human health and disease. Annu Rev Genet. 2020;54:487–510.

    CAS 
    Article 

    Google Scholar
     

  • Nurk S, Koren S, Rhie A, et al (2021) The complete sequence of a human genome. bioRxiv

  • Voichek Y, Weigel D. Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nat Genet. 2020;52(5):534–40. https://doi.org/10.1038/s41588-020-0612-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph. Genome Biol. 2020;21:1–19.

    Article 

    Google Scholar
     

  • DeRosse P, Karlsgodt KH. Examining the psychosis continuum. Curr Behav Neurosci reports. 2015;2(2):80–9. https://doi.org/10.1007/s40473-015-0040-7.

    Article 

    Google Scholar
     

  • Pies R. How “objective” are psychiatric diagnoses?:(guess again). Psychiatry (Edgmont). 2007;4(10):18–22.


    Google Scholar
     

  • Graber ML (2013) The incidence of diagnostic error in medicine. BMJ Qual Saf 22:ii21–ii27

  • Cai N, Revez JA, Adams MJ, et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat Genet. 2020;52(4):437–47. https://doi.org/10.1038/s41588-020-0594-5.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahl A, Cai N, Ko A, Laakso M, Pajukanta P, Flint J, et al. Reverse GWAS: Using genetics to identify and model phenotypic subtypes. PLoS Genet. 2019;15(4):e1008009. https://doi.org/10.1371/journal.pgen.1008009.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)