• Bukowska D, Kempisty B, Piotrowska H, Walczak R, Sniadek P, Dziuban J, et al. The invasive and new non-invasive methods of mammalian oocyte and embryo quality assessment: a review. Vet Med (Praha). 2012;57:169–76. https://doi.org/10.17221/5913-VETMED.

    Article 

    Google Scholar
     

  • Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith LC. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals. 2020;10:2196. https://doi.org/10.3390/ani10122196.

    Article 
    PubMed Central 

    Google Scholar
     

  • Revelli A, Piane LD, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:40. https://doi.org/10.1186/1477-7827-7-40.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296:2178–80. https://doi.org/10.1126/science.1071965.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. https://doi.org/10.3402/jev.v4.27066.

    Article 
    PubMed 

    Google Scholar
     

  • Llobat L. Extracellular vesicles and domestic animal reproduction. Res Vet Sci. 2021;136:166–73. https://doi.org/10.1016/j.rvsc.2021.02.016.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gervasi MG, Soler AJ, González-Fernández L, Alves MG, Oliveira PF, Martín-Hidalgo D. Extracellular vesicles, the road toward the improvement of ART outcomes. Animals. 2020;10:2171. https://doi.org/10.3390/ani10112171.

    Article 
    PubMed Central 

    Google Scholar
     

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41. https://doi.org/10.1373/clinchem.2010.147405.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019;30:656–73. https://doi.org/10.1016/J.CMET.2019.07.011.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9. https://doi.org/10.1038/ncb1596.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sohel MMH, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013;8:e78505. https://doi.org/10.1371/journal.pone.0078505.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep. 2018;8:17036. https://doi.org/10.1038/s41598-018-35379-3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scalici E, Traver S, Mullet T, Molinari N, Ferrières A, Brunet C, et al. Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci Rep. 2016;6:24976. https://doi.org/10.1038/srep24976.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ireland JJ, Murphee RL, Coulson PB. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J Dairy Sci. 1980;63:155–60. https://doi.org/10.3168/jds.S0022-0302(80)82901-8.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yoshioka K, Suzuki C, Onishi A. Defined system for in vitro production of porcine embryos using a single basic medium. J Reprod Dev. 2008;54:208–13. https://doi.org/10.1262/jrd.20001.

    Article 
    PubMed 

    Google Scholar
     

  • Bartkova A, Morovic M, Strejcek F, Murin M, Benc M, Percinic FP, et al. Characterization of porcine oocytes stained with Lissamine green B and their developmental potential in vitro. Anim Reprod. 2020;17:e20200533. https://doi.org/10.1590/1984-3143-ar2020-0533.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta R, Li S, Fischer K, Kind A, Flisikowska T, Flisikowski K, et al. Non-invasive assessment of porcine oocyte quality by supravital staining of cumulus-oocyte complexes with lissamine green B. Zygote. 2016;24:418–27. https://doi.org/10.1017/S0967199415000349.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14:228–32. https://doi.org/10.1038/nmeth.4185.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. https://doi.org/10.1186/gb-2010-11-3-r25.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    Article 

    Google Scholar
     

  • Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13:e0206239. https://doi.org/10.1371/journal.pone.0206239.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34. https://doi.org/10.1093/nar/27.1.29.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–3. https://doi.org/10.1093/bioinformatics/btp101.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gad A, Nemcova L, Murin M, Kanka J, Laurincik J, Benc M, et al. microRNA expression profile in porcine oocytes with different developmental competence derived from large or small follicles. Mol Reprod Dev. 2019;86:426–39. https://doi.org/10.1002/mrd.23121.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yoshioka K, Suzuki C, Tanaka A, Anas IM-K, Iwamura S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod. 2002;66:112–9. https://doi.org/10.1095/biolreprod66.1.112.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Torner H, Brüssow K-P, Alm H, Ratky J, Pöhland R, Tuchscherer A, et al. Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depends on the stage of pre-ovulatory maturation. Theriogenology. 2004;61:1675–89. https://doi.org/10.1016/j.theriogenology.2003.09.013.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Egerszegi I, Alm H, Rátky J, Heleil B, Brüssow K-P, Torner H. Meiotic progression, mitochondrial features and fertilisation characteristics of porcine oocytes with different G6PDH activities. Reprod Fertil Dev. 2010;22:830–8. https://doi.org/10.1071/RD09140.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sirard M-A, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65:126–36. https://doi.org/10.1016/j.theriogenology.2005.09.020.

    Article 
    PubMed 

    Google Scholar
     

  • Fischer NM, Nguyen HV, Singh B, Baker VL, Segars JH. Prognostic value of oocyte quality in assisted reproductive technology outcomes: a systematic review. F S Rev. 2021;2:120–39. https://doi.org/10.1016/j.xfnr.2021.03.001.

    Article 

    Google Scholar
     

  • Wu Y-G, Liu Y, Zhou P, Lan G-C, Han D, Miao D-Q, et al. Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell Res. 2007;17:722–31. https://doi.org/10.1038/cr.2007.66.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hamrah P, Alipour F, Jiang S, Sohn J-H, Foulks GN. Optimizing evaluation of Lissamine green parameters for ocular surface staining. Eye (Lond). 2011;25:1429–34. https://doi.org/10.1038/eye.2011.184.

    CAS 
    Article 

    Google Scholar
     

  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoue Y, Munakata Y, Shinozawa A, Kawahara-Miki R, Shirasuna K, Iwata H. Prediction of major microRNAs in follicular fluid regulating porcine oocyte development. J Assist Reprod Genet. 2020;37:2569–79. https://doi.org/10.1007/s10815-020-01909-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machtinger R, Rodosthenous R, Mansour A, Adir M, Racowsky C, Hauser R, et al. Mirnas isolated from extracellular vesicles in follicular fluid and oocyte development potential. Fertil Steril. 2015;104:e54. https://doi.org/10.1016/j.fertnstert.2015.07.162.

    Article 

    Google Scholar
     

  • de Ávila ACFCM, Bridi A, Andrade GM, del Collado M, Sangalli JR, Nociti RP, et al. Estrous cycle impacts microRNA content in extracellular vesicles that modulate bovine cumulus cell transcripts during in vitro maturation. Biol Reprod. 2020;102:362–75. https://doi.org/10.1093/biolre/ioz177.

    Article 
    PubMed 

    Google Scholar
     

  • Hung W-T, Hong X, Christenson LK, McGinnis LK. Extracellular vesicles from bovine follicular fluid support cumulus expansion. Biol Reprod. 2015;93:117–8. https://doi.org/10.1095/biolreprod.115.132977.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012;86:71. https://doi.org/10.1095/biolreprod.111.093252.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ristori E, Nicoli S. Comparative functions of miRNAs in embryonic neurogenesis and neuronal network formation. Essentials Noncoding RNA Neurosci. 2017:265–82. https://doi.org/10.1016/B978-0-12-804402-5.00015-7.

  • Zhang J, Cheng J, Zeng Z, Wang Y, Li X, Xie Q, et al. Comprehensive profiling of novel microRNA-9 targets and a tumor suppressor role of microRNA-9 via targeting IGF2BP1 in hepatocellular carcinoma. Oncotarget. 2015;6:42040–52. https://doi.org/10.18632/oncotarget.5969.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31:355–62. https://doi.org/10.1007/s10815-013-0161-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo H, Han Y, Liu J, Zhang Y. Identification of microRNAs in granulosa cells from patients with different levels of ovarian reserve function and the potential regulatory function of miR-23a in granulosa cell apoptosis. Gene. 2019;686:250–60. https://doi.org/10.1016/j.gene.2018.11.025.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Patel SS, Carr BR. Oocyte quality in adult polycystic ovary syndrome. Semin Reprod Med. 2008;26:196–203. https://doi.org/10.1055/s-2008-1042958.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Decanter C. Oocyte quality in PCOS. In: Palomba S, editors. Infertility women with polycystic ovary syndrome. Cham: Springer; 2018. p. 31–9. https://doi.org/10.1007/978-3-319-45534-1_4.

  • An X, Ma H, Liu Y, Li F, Song Y, Li G, et al. Effects of miR-101-3p on goat granulosa cells in vitro and ovarian development in vivo via STC1. J Anim Sci Biotechnol. 2020;11:102. https://doi.org/10.1186/s40104-020-00506-6.

    Article 

    Google Scholar
     

  • Gad A, Sánchez JM, Browne JA, Nemcova L, Laurincik J, Prochazka R, et al. Plasma extracellular vesicle miRNAs as potential biomarkers of superstimulatory response in cattle. Sci Rep. 2020;10:19130. https://doi.org/10.1038/s41598-020-76152-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007;21:1132–47. https://doi.org/10.1210/me.2007-0022.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y. MiR-133 is involved in estrogen deficiency-induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells. Med Sci Monit. 2015;21:1527–34. https://doi.org/10.12659/MSM.894323.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hewitt S, Korach K. Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues. Reproduction. 2003;125:143–9. https://doi.org/10.1530/rep.0.1250143.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Schatten H, Cui X-S, Sun S-C. Editorial: quality control of mammalian oocyte meiotic maturation: causes, molecular mechanisms and solutions. Front Cell Dev Biol. 2021;9:2163. https://doi.org/10.3389/fcell.2021.736331.

    Article 

    Google Scholar
     

  • Lee S, Kang D-W, Hudgins-Spivey S, Krust A, Lee E-Y, Koo Y, et al. Theca-specific estrogen receptor-alpha knockout mice lose fertility prematurely. Endocrinology. 2009;150:3855–62. https://doi.org/10.1210/en.2008-1774.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou J, Jin X, Sheng Z, Zhang Z. miR-206 serves an important role in polycystic ovary syndrome through modulating ovarian granulosa cell proliferation and apoptosis. Exp Ther Med. 2021;21:179. https://doi.org/10.3892/etm.2021.9610.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian X, Li L, Fu G, Wang J, He Q, Zhang C, et al. miR-133a-3p regulates the proliferation and apoptosis of intestinal epithelial cells by modulating the expression of TAGLN2. Exp Ther Med. 2021;22:824. https://doi.org/10.3892/etm.2021.10256.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet. 2017;34:525–33. https://doi.org/10.1007/s10815-017-0876-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98:3068–79. https://doi.org/10.1210/jc.2013-1715.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, et al. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep. 2015;5:8689. https://doi.org/10.1038/srep08689.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schauer SN, Sontakke SD, Watson ED, Esteves CL, Donadeu FX. Involvement of miRNAs in equine follicle development. Reproduction. 2013;146:273–82. https://doi.org/10.1530/REP-13-0107.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Grossman H, Har-Paz E, Gindi N, Miller I, Shalgi R. Pre-ovulatory intercellular regulation of miR-125a-3p within mouse ovarian follicles. Reproduction. 2020;159:215–25. https://doi.org/10.1530/REP-19-0419.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kim K-H, Seo Y-M, Kim E-Y, Lee S-Y, Kwon J, Ko J-J, et al. The miR-125 family is an important regulator of the expression and maintenance of maternal effect genes during preimplantational embryo development. Open Biol. 2016;6:160181. https://doi.org/10.1098/rsob.160181.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuno Y, Onuma A, Fujioka YA, Yasuhara K, Fujii W, Naito K, et al. Effects of exosome-like vesicles on cumulus expansion in pigs in vitro. J Reprod Dev. 2017;63:51–8. https://doi.org/10.1262/jrd.2016-124.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues TA, Tuna KM, Alli AA, Tribulo P, Hansen PJ, Koh J, et al. Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reprod Fertil Dev. 2019;31:888–97. https://doi.org/10.1071/RD18450.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • da Silveira JC, Andrade GM, del Collado M, Sampaio RV, Sangalli JR, Silva LA, et al. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS One. 2017;12:e0179451. https://doi.org/10.1371/journal.pone.0179451.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asaadi A, Dolatabad NA, Atashi H, Raes A, Van Damme P, Hoelker M, et al. Extracellular vesicles from follicular and ampullary fluid isolated by density gradient ultracentrifugation improve bovine embryo development and quality. Int J Mol Sci. 2021;22:578. https://doi.org/10.3390/ijms22020578.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wang L, Wang D, Zou X, Xu C. Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ Sci B. 2009;10:483–92. https://doi.org/10.1631/jzus.B0820379.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Tan J, Miao Y, Zhang Q. The effect of extracellular vesicles on the regulation of mitochondria under hypoxia. Cell Death Dis. 2021;12:358. https://doi.org/10.1038/s41419-021-03640-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valenti D, Vacca RA, Moro L, Atlante A. Mitochondria can cross cell boundaries: an overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int J Mol Sci. 2021;22:8312. https://doi.org/10.3390/ijms22158312.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)