• Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the international society for heart and lung transplantation. J Am Coll Cardiol. 2009;53(15):e1-90.

    PubMed 
    Article 

    Google Scholar
     

  • Gomes CP, Ágg B, Andova A, Arslan S, Baker A, Barteková M, Beis D, Betsou F, Bezzina Wettinger S, Bugarski B, Condorelli G. Catalyzing transcriptomics research in cardiovascular disease: the CardioRNA COST action CA17129. Non-Coding RNA. 2019;5(2):31.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hassanin A, Hassanein M, Bendary A, Maksoud MA. Demographics, clinical characteristics, and outcomes among hospitalized heart failure patients across different regions of Egypt. Egypt Heart J. 2020;72(1):1–9.

    Article 

    Google Scholar
     

  • Lawlor DA, Smith GD, Leon DA, Sterne JA, Ebrahim S. Secular trends in mortality by stroke subtype in the 20th century: a retrospective analysis. Lancet. 2002;360(9348):1818–23.

    PubMed 
    Article 

    Google Scholar
     

  • Sajjadieh A, Hekmatnia A, Keivani M, Asoodeh A, Pourmoghaddas M, Sanei H. Diagnostic performance of 64-row coronary CT angiography in detecting significant stenosis as compared with conventional invasive coronary angiography. ARYA Atheroscler. 2013;9(2):157.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silverio A, Cavallo P, De Rosa R, Galasso G. Big health data and cardiovascular diseases: a challenge for research, an opportunity for clinical care. Front Med. 2019;25(6):36.

    Article 

    Google Scholar
     

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010;39(suppl_1):D152–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajan S, Hutvagner G. Regulation of miRNA processing and miRNA mediated gene repression in cancer. Microrna. 2014;3(1):10–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Min PK, Chan SY. The biology of circulating microRNA s in cardiovascular disease. Eur J Clin Invest. 2015;45(8):860–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren J, Zhang J, Xu N, Han G, Geng Q, Song J, Li S, Zhao J, Chen H. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS One. 2013;8(12):e80738.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jamaluddin MS, Weakley SM, Zhang L, Kougias P, Lin PH, Yao Q, Chen C. miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn. 2011;11(1):79–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tijsen AJ, Pinto YM, Creemers EE. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol-Heart Circ Physiol. 2012;303(9):H1085–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Melak T, Baynes HW. Circulating microRNAs as possible biomarkers for coronary artery disease: a narrative review. Ejifcc. 2019;30(2):179.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. https://doi.org/10.1038/s41467-019-09234-6.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kern F, Aparicio-Puerta E, Li Y, Fehlmann T, Kehl T, Wagner V, Ray K, Ludwig N, Lenhof HP, Meese E, Keller A. miRTargetLink 2.0— interactive miRNA target gene and target pathway networks. Nucleic Acids Res. 2021;49(W1):W409–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Faul F, Erdfelder E, Lang AG, Buchner A. G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.

    PubMed 
    Article 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vasan RS, Sullivan LM, Wilson PW, Sempos CT, Sundström J, Kannel WB, Levy D, D’agostino RB. Relative importance of borderline and elevated levels of coronary heart disease risk factors. Ann Intern Med. 2005;142(6):393–402.

    PubMed 
    Article 

    Google Scholar
     

  • Cresci S, Depta JP, Lenzini PA, Li AY, Lanfear DE, Province MA, Spertus JA, Bach RG. Cytochrome p450 gene variants, race, and mortality among clopidogrel-treated patients after acute myocardial infarction. Circ Cardiovasc Genet. 2014;7(3):277–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T, Antman EM, Braunwald E, Sabatine MS. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON–TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010;376(9749):1312–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, Chasman DI, Baber U, Mehran R, Rader DJ, Fuster V. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meltzer PS. Small RNAs with big impacts. Nature. 2005;435(7043):745–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsui NB, Ng EK, Lo YD. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48(10):1647–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsai P-C, Liao Y-C, Wang Y-S, et al. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res. 2013;50:346–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta. 2011;412:66–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fleissner F, Jazbutyte V, Fiedler J, et al. Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ Res. 2010;107:138–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weber M, Baker MB, Moore JP, et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun. 2010;393:643–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou J, Wang K-C, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu W, Ling S, Sun W, Liu T, Li Y, Zhong G, Zhao D, Zhang P, Song J, Jin X, Xu Z. Circulating microRNAs correlated with the level of coronary artery calcification in symptomatic patients. Sci Rep. 2015;5(1):1.


    Google Scholar
     

  • Jansen F, Yang X, Proebsting S, et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc. 2014;3:e001249.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wagner J, Riwanto M, Besler C, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33:1392–400.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • D’Alessandra Y, Carena MC, Spazzafumo L, et al. Diagnostic potential of plasmatic microRNA signatures in stable and unstable angina. PLoS ONE. 2013;8:e80345.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kuhnert F, Mancuso MR, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008;135:3989–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maiti D, Xu Z, Duh EJ. Vascular endothelial growth factor induces MEF2C and MEF2-dependent activity in endothelial cells. Invest Ophthalmol Vis Sci. 2008;49(8):3640–8.

    PubMed 
    Article 

    Google Scholar
     

  • Xu Z, Han Y, Liu J, Jiang F, Hu H, Wang Y, Liu Q, Gong Y, Li X. MiR-135b-5p and MiR-499a-3p promote cell proliferation and migration in atherosclerosis by directly targeting MEF2C. Sci Rep. 2015;5(1):1–5.


    Google Scholar
     

  • Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs. 2007;134(23):4131–4140. https://doi.org/10.1242/dev.008367.

  • Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN. Requirement of the MADS-box transcription factor MEF2C for vascular development. Development. 1998;125(22):4565–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maciejak A, Kiliszek M, Opolski G, Segiet A, Matlak K, Dobrzycki S, Tulacz D, Sygitowicz G, Burzynska B, Gora M. miR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs. Mol Med Rep. 2016;14(3):2867–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu Y, Lin Y, Yan W, Sun Z, Jiang Z, Shen B, Jiang X, Shi J. Novel biomarker microRNAs for subtyping of acute coronary syndrome: a bioinformatics approach. Biomed Res Int. 2016;1:2016.


    Google Scholar
     

  • Choteau SA, Torres LF, Barraclough JY, Elder AM, Martínez GJ, Fan WY, Shrestha S, Ong KL, Barter PJ, Celermajer DS, Rye KA. Transcoronary gradients of HDL-associated MicroRNAs in unstable coronary artery disease. Int J Cardiol. 2018;15(253):138–44.

    Article 

    Google Scholar
     

  • Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79:581–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niculescu LS, Simionescu N, Sanda GM, Carnuta MG, Stancu CS, Popescu AC, Popescu MR, Vlad A, Dimulescu DR, Simionescu M, Sima AV. MiR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable coronary artery disease patients. PLoS ONE. 2015;10(10):e0140958.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dégano IR, Camps-Vilaró A, Subirana I, García-Mateo N, Cidad P, Muñoz-Aguayo D, Puigdecanet E, Nonell L, Vila J, Crepaldi FM, de Gonzalo-Calvo D. Association of circulating microRNAs with coronary artery disease and usefulness for reclassification of healthy individuals: the REGICOR study. J Clin Med. 2020;9(5):1402.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Darabi F, Aghaei M, Movahedian A, Pourmoghadas A, Sarrafzadegan N. The role of serum levels of microRNA-21 and matrix metalloproteinase-9 in patients with acute coronary syndrome. Mol Cell Biochem. 2016;422(1):51–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Darabi F, Aghaei M, Movahedian A, Elahifar A, Pourmoghadas A, Sarrafzadegan N. Association of serum microRNA-21 levels with Visfatin, inflammation, and acute coronary syndromes. Heart Vessels. 2017;32(5):549–57.

    PubMed 
    Article 

    Google Scholar
     

  • Zhu L, Chen T, Ye W, Wang JY, Zhou JP, Li ZY, Li CC. Circulating miR-182-5p and miR-5187-5p as biomarkers for the diagnosis of unprotected left main coronary artery disease. J Thorac Dis. 2019;11(5):1799.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu Y, Guo W, Zeng D, Fang Y, Wang R, Guo D, Qi B, Xue Y, Xue F, Jin Z, Li Y. Inhibiting miR-205 alleviates cardiac ischemia/reperfusion injury by regulating oxidative stress, mitochondrial function, and apoptosis. Oxid Med Cell Longev. 2021;29:2021.


    Google Scholar
     

  • Feng L, Wei J, Liang S, Sun Z, Duan J. miR-205/IRAK2 signaling pathway is associated with urban airborne PM2.5-induced myocardial toxicity. Nanotoxicology. 2020;14(9):1198–212.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, Hartmann T, Lackner KJ, Westermann D, Schnabel RB, Blankenberg S. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS ONE. 2015;10(12):e0145930.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shan Z, Qin S, Li W, Wu W, Yang J, Chu M, Li X, Huo Y, Schaer GL, Wang S, Zhang C. An endocrine genetic signal between blood cells and vascular smooth muscle cells: role of microRNA-223 in smooth muscle function and atherogenesis. J Am Coll Cardiol. 2015;65(23):2526–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are trans- ported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tabet F, Vickers KC, Cuesta Torres LF, et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun. 2014;5:3292.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Magenta A, Ciarapica R, Capogrossi MC. The emerging role of miR-200 family in cardiovascular diseases. Circ Res. 2017;120(9):1399–402.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weber M, Baker MB, Patel RS, et al. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol Res Pract. 2011;2011:1–5.

    Article 

    Google Scholar
     

  • Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, Weber C. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Investig. 2012;122(11):4190–202.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei Y, Zhu M, Corbalán-Campos J, et al. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:796–803.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patterson AJ, Song MA, Choe D, Xiao D, Foster G, Zhang L. Early detection of coronary artery disease by micro-RNA analysis in asymptomatic patients stratified by coronary CT angiography. Diagnostics. 2020;10(11):875.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu H, Yang N, Fei Z, et al. Analysis of plasma miR-208a and miR-370 expression levels for early diagnosis of coronary artery disease. Biomed Rep. 2016;5:332–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao H, Guddeti RR, Matsuzawa Y, et al. Plasma levels of microRNA- 145 are associated with severity of coronary artery disease. PLoS ONE. 2015;10:e0123477.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ying D, Yang SH, Sha L, et al. Circulating microRNAs as novel diagnostic biomarkers for very early-onset (≤40 years) coronary artery disease. Biomed Environ Sci. 2016;29:545–54.


    Google Scholar
     

  • Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Röxe T, Zeiher AM, Landmesser U, Dimmeler S. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(6):1392–400.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Faccini J, Ruidavets JB, Cordelier P, Martins F, Maoret JJ, Bongard V, Ferrières J, Roncalli J, Elbaz M, Vindis C. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci Rep. 2017;7(1):1.

    Article 
    CAS 

    Google Scholar
     

  • Farina NH, Wood ME, Perrapato SD, Francklyn CS, Stein GS, Stein JL, Lian JB. Standardizing analysis of circulating microRNA: clinical and biological relevance. J Cell Biochem. 2014;115(5):805–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brown RA, Epis MR, Horsham JL, Kabir TD, Richardson KL, Leedman PJ. Total RNA extraction from tissues for microRNA and target gene expression analysis: not all kits are created equal. BMC Biotechnol. 2018;18(1):1–1.

    Article 
    CAS 

    Google Scholar
     

  • Vigneron N, Meryet-Figuière M, Guttin A, Issartel JP, Lambert B, Briand M, Louis MH, Vernon M, Lebailly P, Lecluse Y, Joly F. Towards a new standardized method for circulating miRNAs profiling in clinical studies: Interest of the exogenous normalization to improve miRNA signature accuracy. Mol Oncol. 2016;10(7):981–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS ONE 2012;7(7):e41561. https://doi.org/10.1371/journal.pone.0041561.

  • Schwarzenbach H, Da Silva AM, Calin G, Pantel K. Data normalization strategies for microRNA quantification. Clin Chem. 2015;61(11):1333–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nikas JB, Low WC. ROC-supervised principal component analysis in connection with the diagnosis of diseases. Am J Transl Res. 2011;3(2):180.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, Bonauer A. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ali W, Mishra S, Rizvi A, Perrone Ma, Tasleem M, Wamique M, Sethi R, Pradhan A. Diagnostic value of circulating MicroRNAs for middle aged coronary artery disease patients: a case-control study. J Clin Diagn Res. 2021;15(3):5–10.

  • Gao H, Guddeti RR, Matsuzawa Y, Liu LP, Su LX, Guo D, Nie SP, Du J, Zhang M. Plasma levels of microRNA-145 are associated with severity of coronary artery disease. PLoS ONE. 2015;10(5):e0123477.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Turky HF, Emam WA, Shalaby SM, Kandil NT. Plasma MicroRNA-133a as a potential predictor for coronary artery stenosis severity. Zagazig Univ Med J. 2020;26(1):64–74.


    Google Scholar
     

  • Elshafae MM, Sabry JH, Salem MA, Elshafee HM. MicroRNA-155 in patients with chronic stable angina. Ann Appl Bio-Sci. 2017;4(1):A74-82.


    Google Scholar
     

  • Fujii S, Sugiura T, Dohi Y, Ohte N. MicroRNA in atherothromobosis: is it useful as a disease marker? Thromb J. 2016;14(1):141–3.


    Google Scholar
     

  • Jusic A, Devaux Y. EU-CardioRNA COST Action (CA17129) noncoding RNAs in hypertension. Hypertension. 2019;74(3):477–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jansen F, Schäfer L, Wang H, Schmitz T, Flender A, Schueler R, Hammerstingl C, Nickenig G, Sinning JM, Werner N. Kinetics of circulating micro RNA s in response to cardiac stress in patients with coronary artery disease. J Am Heart Assoc. 2017;6(8):e005270. https://doi.org/10.1161/JAHA.116.005270

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moris D, Spartalis M, Tzatzaki E, Spartalis E, Karachaliou GS, Triantafyllis AS, Karaolanis GI, Tsilimigras DI, Theocharis S. The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med. 2017; 5(16).

  • Werner TR, Kunze AC, Stenzig J, Eschenhagen T, Hirt MN. Blockade of miR-140-3p prevents functional deterioration in afterload-enhanced engineered heart tissue. Sci Rep. 2019;9(1):1.

    Article 
    CAS 

    Google Scholar
     

  • Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heliste J, Jokilammi A, Paatero I, Chakroborty D, Stark C, Savunen T, Laaksonen M, Elenius K. Receptor tyrosine kinase profiling of ischemic heart identifies ROR1 as a potential therapeutic target. BMC Cardiovasc Disord. 2018;18(1):1–2.

    Article 
    CAS 

    Google Scholar
     

  • O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;3(9):402.

    Article 

    Google Scholar
     

  • Sohel MH. Extracellular/circulating microRNAs: release mechanisms, functions and challenges. Achiev Life Sci. 2016;10(2):175–86.


    Google Scholar
     

  • Ahlin F, Arfvidsson J, Vargas KG, Stojkovic S, Huber K, Wojta J. MicroRNAs as circulating biomarkers in acute coronary syndromes: a review. Vascul Pharmacol. 2016;1(81):15–21.

    Article 
    CAS 

    Google Scholar
     

  • Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Laffont B, Rayner KJ. MicroRNAs in the pathobiology and therapy of atherosclerosis. Can J Cardiol. 2017;33(3):313–24.

    PubMed 
    Article 

    Google Scholar
     

  • Taurino C, Miller WH, McBride MW, McClure JD, Khanin R, Moreno MU, Dymott JA, Delles C, Dominiczak AF. Gene expression profiling in whole blood of patients with coronary artery disease. Clin Sci. 2010;119(8):335–43.

    CAS 
    Article 

    Google Scholar
     

  • Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei Y, Nazari-Jahantigh M, Neth P, et al. MicroRNA-126, , àí145, and , àí155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol. 2013;33:449–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taganov KD, Boldin MP, Chang K-J, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low- density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585:854–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Akt1 con- trols macrophage response to lipopolysaccharide by regulating microRNAs. Immunity. 2009;31:220–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Du F, Yu F, Wang Y, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogen- esis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2014;34:759–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li N, Hwangbo C, Jaba IM, Zhang J, Papangeli I, Han J, Mikush N, Larrivée B, Eichmann A, Chun HJ, Young LH. miR-182 modulates myocardial hypertrophic response induced by angiogenesis in heart. Sci Rep. 2016;6(1):1–5.

    Article 
    CAS 

    Google Scholar
     

  • Stather PW, Sylvius N, Sidloff DA, Dattani N, Verissimo A, Wild JB, Butt HZ, Choke E, Sayers RD, Bown MJ. Identification of microRNAs associated with abdominal aortic aneurysms and peripheral arterial disease. J Br Surg. 2015;102(7):755–66.

    CAS 
    Article 

    Google Scholar
     

  • Wu Q, Chen Q, Wang J, Fan D, Zhou H, Yuan Y, Shen D. Long non-coding RNA Pvt1 modulates the pathological cardiac hypertrophy via miR-196b-mediated OSMR regulation. Cell Signal. 2021;1(86):110077.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Cheng N, Du J, Zhang H, Zhang C. MicroRNA-200b-3p promotes endothelial cell apoptosis by targeting HDAC4 in atherosclerosis. BMC Cardiovasc Disord. 2021;21(1):1–2.

    Article 
    CAS 

    Google Scholar
     

  • Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol. 2016;1(94):107–21.

    Article 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)