• Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics, vol 40. Academic Press, San Diego


    Google Scholar
     

  • Baldwin MP, Ayarzagüena B, Birner T, Butchart N, Butler AH, Charlton-Perez AJ, et al (2021) Sudden stratospheric warmings. Rev Geophys 59: e2020RG000708, https://doi.org/10.1029/2020RG000708

    Article 

    Google Scholar
     

  • Butler AH, Seidel DJ, Hardiman SC, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteorol Soc 96(11):1913–1928. https://doi.org/10.1175/BAMS-D-13-00173.1

    Article 

    Google Scholar
     

  • Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66(1):83–109. https://doi.org/10.1029/JZ066i001p00083

    Article 

    Google Scholar
     

  • Chandran A, Collins RL, Garcia RR, Marsh DR (2011) A case study of an elevated stratopause generated in the whole atmosphere community climate model. Geophys Res Lett. 38:L08804. https://doi.org/10.1029/2010GL046566

    Article 

    Google Scholar
     

  • Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20(3):449–469

    Article 

    Google Scholar
     

  • Chau JL, Fejer BG, Goncharenko LP (2009) Quiet variability of equatorial E x B drifts during a sudden stratospheric warming event. Geophys Res Lett. 36:L05101. https://doi.org/10.1029/2008GL036785

    Article 

    Google Scholar
     

  • Chau JL, Goncharenko LP, Fejer BG, Liu H-L (2012) Equatorial and low latitude ionospheric effects during sudden stratospheric warming events. Space Sci Rev 168:385–417. https://doi.org/10.1007/s11214-011-9797-5

    Article 

    Google Scholar
     

  • Chau JL, Hoffmann P, Pedatella NM, Matthias V, Stober G (2015) Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events. J Geophys Res Space Phys 120:3084–3096. https://doi.org/10.1002/2015JA020998

    Article 

    Google Scholar
     

  • Chen X, Hu X, Xiao C (2012) Variability of MLT winds and waves over mid-latitude during the 2000/2001 and 2009/2010 winter stratospheric sudden warming. Ann Geophys. 30:991–1001. https://doi.org/10.5194/angeo-30-991-2012

    Article 

    Google Scholar
     

  • Fejer BG, Olson ME, Chau JL, Stolle C, Lühr H, Goncharenko LP, Nagatsuma T (2010) Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings. J Geophys Res 115:A00G03, https://doi.org/10.1029/2010JA015273

    Article 

    Google Scholar
     

  • Forbes JM, Wu D (2006) Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J Atmos Sci 63(7):1776–1797. https://doi.org/10.1175/JAS3724.1

    Article 

    Google Scholar
     

  • Forbes JM, Zhang X (2012) Lunar tide amplification during the January 2009 stratosphere warming event: Observations and theory. J Geophys Res 117:A12312. https://doi.org/10.1029/2012JA017963

    Article 

    Google Scholar
     

  • Forbes JM, Zhang X, Palo S, Russell J, Mertens CJ, Mlynczak M (2008) Tidal variability in the ionospheric dynamo region. J Geophys Res 113:A02310. https://doi.org/10.1029/2007JA012737

    Article 

    Google Scholar
     

  • Fuller-Rowell T, Wu F, Akmaev R, Fang TW, Araujo-Pradere E (2010) A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics. J Geophys Res 115:A00G08. https://doi.org/10.1029/2010JA015524

    Article 

    Google Scholar
     

  • Funke B, López-Puertas M, Bermejo-Pantaleón D, García-Comas M, Stiller GP, von Clarmann T, Kiefer M, Linden A (2010) Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming. Geophys Res Lett. 37:L13803. https://doi.org/10.1029/2010GL043619

    Article 

    Google Scholar
     

  • Gan Q, Du J, Ward WE et al (2014) Climatology of the diurnal tides from eCMAM30 (1979 to 2010) and its comparison with SABER. Earth Planet Space 66:103. https://doi.org/10.1186/1880-5981-66-103

    Article 

    Google Scholar
     

  • Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA, Darmenov A, Bosilovich MG, Reichle R, Wargan K, Coy L, Cullather R, Draper C, Akella S, Buchard V, Conaty A, da Silva AM, Gu W, Kim G, Koster R, Lucchesi R, Merkova D, Nielsen JE, Partyka G, Pawson S, Putman W, Rienecker M, Schubert SD, Sienkiewicz M, Zhao B (2017) The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J Clim 30(14):5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

    Article 

    Google Scholar
     

  • Goncharenko L, Zhang S-R (2008) Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys Res Lett. 35:L21103. https://doi.org/10.1029/2008GL035684

    Article 

    Google Scholar
     

  • Goncharenko LP, Coster AJ, Chau JL, Valladares CE (2010) Impact of sudden stratospheric warmings on equatorial ionization anomaly. J Geophys Res 115, A00G07, https://doi.org/10.1029/2010JA015400

    Article 

    Google Scholar
     

  • Goncharenko LP, Coster AJ, Plumb RA, Domeisen DIV (2012) The potential role of stratospheric ozone in the stratosphere-ionosphere coupling during stratospheric warmings. Geophys Res Lett 39:L08101. https://doi.org/10.1029/2012GL051261

    Article 

    Google Scholar
     

  • Gong Y, Ma Z, Lv X, Zhang S, Zhou Q, Aponte N, Sulzer M (2018) A study on the quarterdiurnal tide in the thermosphere at Arecibo during the February 2016 sudden stratospheric warming event. Geophys Res Lett 45:13142–13149. https://doi.org/10.1029/2018GL080422

    Article 

    Google Scholar
     

  • Hays PB, Wu D L (1994). Observations of the diurnal tide from space. J Atmos Sci 1994, 51(20),3077-3093. https://doi.org/10.1175/1520-0469(1994)051$<$3077:Ootdtf$>$2.0

  • He M, Forbes JM, Chau JL, Li G, Wan W, Korotyshkin DV (2020) High-order solar migrating tides quench at SSW onsets. Geophys Res Lett. 47:e2019GL086778. https://doi.org/10.1029/2019GL086778

    Article 

    Google Scholar
     

  • Hoffmann P, Singer W, Keuer D (2002) Variability of the mesospheric wind fields at middle and Arctic latitudes in winter and its relation to stratospheric circulation disturbances. J Atmos Sol Terr Phys. 64:1229–1240

    Article 

    Google Scholar
     

  • Hoffmann P, Singer W, Keuer D, Hocking WK, Kunze M, Murayama Y (2007) Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events. J Atmos Sol Terr Phys. 69:2355–2366

    Article 

    Google Scholar
     

  • Holton JR (1983) The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci. 40:2497–2507

    Article 

    Google Scholar
     

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94(9):1339–1360. https://doi.org/10.1175/BAMS-D-12-00121.1

    Article 

    Google Scholar
     

  • Hurwitz MM, Newman PA, Garfinkel CI (2011) The Arctic vortex in March 2011: a dynamical perspective. Atmos Chem Phys. 11:11447–11453. https://doi.org/10.5194/acp-11-11447-2011

    Article 

    Google Scholar
     

  • Jin H, Miyoshi Y, Pancheva D, Mukhtarov P, Fujiwara H, Shinagawa H (2012) Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations. J Geophys Res. 117:A10323. https://doi.org/10.1029/2012JA017650

    Article 

    Google Scholar
     

  • Karlsson B, McLandress C, Shepherd TG (2009) Inter-hemispheric mesospheric coupling in a comprehensive middle atmosphere model. J Atmos Sol Terr Phys. 71:518–530. https://doi.org/10.1016/j.jastp.2008.08.006

    Article 

    Google Scholar
     

  • Körnich H, Becker E (2010) A simple model for the interhemispheric coupling of the middle atmosphere circulation. Adv Space Res 45:661–668. https://doi.org/10.1016/j.asr.2009.11.001

    Article 

    Google Scholar
     

  • Kumari K, Oberheide J (2020) QBO, ENSO and solar cycle effects in short-term nonmigrating tidal variability on planetary wave timescales from SABER – an information-theoretic approach. J Geophys Res Atmos 125:e2019JD031910, https://doi.org/10.1029/2019JD031910

    Article 

    Google Scholar
     

  • Labitzke K (1972) Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter. J Atmos Sci. 29:756–766. https://doi.org/10.1175/1520-0469(1972)029<0756:TCITMA>2.0.CO;2

    Article 

    Google Scholar
     

  • Labitzke K (1981) Stratospheric-mesospheric midwinter disturbances—a summary of observed characteristics. J Geophys Res 86(NC10):9665–9678. https://doi.org/10.1029/JC086iC10p09665

    Article 

    Google Scholar
     

  • Lieberman RS (1991) Nonmigrating diurnal tides in the equatorial middle atmosphere. J Atmos Sci. 48:1112–1123

    Article 

    Google Scholar
     

  • Lieberman RS, Oberheide J, Talaat ER (2013) Nonmigrating diurnal tides observed in global thermospheric winds. J Geophys Res Space Phys 118:7384–7397. https://doi.org/10.1002/2013JA018975

    Article 

    Google Scholar
     

  • Lieberman RS, Riggin DM, Ortland DA, Oberheide J, Siskind DE (2015) Global observations and modeling of nonmigrating diurnal tides generated by tide-planetary wave interactions. J Geophys Res Atmos. 120:11419–11437. https://doi.org/10.1002/2015JD023739

    Article 

    Google Scholar
     

  • Limpasuvan V, Richter JH, Orsolini YJ, Stordal F, Kvissel O (2012) The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM. J Atmos Sol-Terr Phys 78–79:84–98. https://doi.org/10.1016/j.jastp.2011.03.004

    Article 

    Google Scholar
     

  • Lin CH, Lin JT, Chang LC, Chen WH, Chen CH, Liu JY (2013) Stratospheric sudden warming effects on the ionospheric migrating tides during 2008–2010 observed by FORMOSAT-3/COSMIC. J Atmos Solar Terr Phys 103:66–75. https://doi.org/10.1016/j.jastp.2013.03.026

    Article 

    Google Scholar
     

  • Lindzen RS, Chapman S (1969) Atmospheric tides. Space Sci Rev 10(1):3–188

    Article 

    Google Scholar
     

  • Liu H-L, Roble RG (2002) A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3. J Geophys Res Atmos. 107:4695. https://doi.org/10.1029/2001JD001533

    Article 

    Google Scholar
     

  • Liu HL, Wang W, Richmond AD, Roble RG (2010) Ionospheric variability due to planetary waves and tides for solar minimum conditions. J Geophys Res Space 115: A00G01. https://doi.org/10.1029/2009JA015188

    Article 

    Google Scholar
     

  • Liu HL, Bardeen CG, Foster BT, Lauritzen P, Liu J, Lu G, Marsh DR, Maute A, McInerney JM, Pedatella NM, Qian L, Richmond AD, Roble RG, Solomon SC, Vitt FM, Wang W (2018) Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0). J Adv Model Earth Syst 10:381–402. https://doi.org/10.1002/2017MS001232

    Article 

    Google Scholar
     

  • Liu G, Lieberman RS, Harvey VL, Pedatella NM, Oberheide J, Hibbins RE, et al (2021) Tidal variations in the mesosphere and lower thermosphere before, during, and after the 2009 sudden stratospheric warming. J Geophys Res Space Phys 126, e2020JA028827. https://doi.org/10.1029/2020JA028827

    Article 

    Google Scholar
     

  • Lu X, Liu H-L, Liu AZ, Yue J, McInerney JM, Li Z (2012) Momentum budget of the migrating diurnal tide in the Whole Atmosphere Community Climate Model at vernal equinox. J Geophys Res. 117:D07112. https://doi.org/10.1029/2011JD017089

    Article 

    Google Scholar
     

  • Manney GL, Krüger K, Pawson S, Minschwaner K, Schwartz MJ, Daffer WH, Waters JW (2008) The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J Geophys Res 113:D11115. https://doi.org/10.1029/2007JD009097

    Article 

    Google Scholar
     

  • Manney GL, Schwartz MJ, Krüger K, Santee ML, Pawson S, Lee JN, Livesey NJ (2009) Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking, (2009) Arctic stratospheric major warming. Geophys Res Lett 36:L12815. https://doi.org/10.1029/2009GL038586

    Article 

    Google Scholar
     

  • Marsh DR, Mills MJ, Kinnison DE, Lamarque J-F, Calvo N, Polvani LM (2013) Climate change from 1850 to 2005 simulated in CESM1(WACCM). J Clim 26(19):7372–7391. https://doi.org/10.1175/JCLI-D-12-00558.1

    Article 

    Google Scholar
     

  • Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28(8):1479–1494. https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2

    Article 

    Google Scholar
     

  • Matthias V, Dörnbrack A, Stober G (2016) The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016. Geophys Res Lett. 43:12287–12294. https://doi.org/10.1002/2016GL071676

    Article 

    Google Scholar
     

  • McLandress C (2002) The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part II: the role of tidal heating and zonal mean winds. J Atmos Sci 59(5): 907–922, https://doi.org/10.1175/1520-0469(2002)059$<$0907:TSVOTP$>$2.0.CO;2

    Article 

    Google Scholar
     

  • Mukherjee BK, Indira K, Dani KK (1987) Perturbations in tropical middle atmosphere during winter. Meteorol Atmos Phys 37:17–26

    Article 

    Google Scholar
     

  • Oberheide J, Hagan ME, Ward WE, Riese M, Offermann D (2000) Modeling the diurnal tide for the CRISTA-1 time period. J Geophys Res. 105:24917–24929

    Article 

    Google Scholar
     

  • Oberheide J, Hagan ME, Roble RG, Offermann D (2002) Sources of nonmigrating tides in the tropical middle atmosphere. J Geophys Res. 107(D21):4567. https://doi.org/10.1029/2002JD002220

    Article 

    Google Scholar
     

  • Oberheide J, Hagan ME, Roble RG (2003) Tidal signatures and aliasing in temperature data from slowly precessing satellites. J Geophys Res. 108:1055. https://doi.org/10.1029/2002JA009585

    Article 

    Google Scholar
     

  • Pancheva D, Mukhtarov P, Mitchell NJ, Andonov B, Merzlyakov E, Singer W, Murayama Y, Kawamura S, Xiong J, Wan W, Hocking W, Fritts D, Riggin D, Meek C, Manson A (2008) Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. Ann Geophys. 26:467–483. https://doi.org/10.5194/angeo-26-467-2008

    Article 

    Google Scholar
     

  • Pancheva D, Mukhtarov P (2011) Atmospheric tides and planetary waves: Recent progress based on SABER/TIMED temperature measurements (2002-2007). Aeronomy of the Earth’s Atmosphere and Ionosphere, pp.19-56

  • Pedatella NM, Liu HL, Richmond AD, Maute A, Fang T-W (2012) Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low-latitude ionosphere. J Geophys Res 117:A08326. https://doi.org/10.1029/2012JA017858

    Article 

    Google Scholar
     

  • Pedatella NM, Liu H-L (2013) The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere. J Geophys Res Space Phys 118:5333–5347. https://doi.org/10.1002/jgra.50492

    Article 

    Google Scholar
     

  • Pedatella NM et al (2014a) The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models. J Geophys Res Space Phys 119:1306–1324. https://doi.org/10.1002/2013JA019421

    Article 

    Google Scholar
     

  • Pedatella NM, Raeder K, Anderson JL, Liu H-L (2014b) Ensemble data assimilation in the whole atmosphere community climate model. J Geophys Res Atmos. 119:9793–9809. https://doi.org/10.1002/2014JD021776

    Article 

    Google Scholar
     

  • Pedatella NM, Oberheide J, Sutton EK, Liu H-L, Anderson JL, Raeder K (2016) Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere. J Geophys Res Space Phys 121:3621–3633. https://doi.org/10.1002/2016JA022528

    Article 

    Google Scholar
     

  • Pedatella N, Chau J, Schmidt H, Goncharenko L, Stolle C, Hocke K, Siddiqui T (2018) How sudden stratospheric warming affects the whole atmosphere. Eos 99:35–38. https://doi.org/10.1029/2018EO092441

    Article 

    Google Scholar
     

  • Pedatella NM, Liu H-L, Marsh DR, Raeder K, Anderson JL (2019) Error growth in the mesosphere and lower thermosphere based on Hindcast experiments in a whole atmosphere model. Space Weather 17:1442–1460. https://doi.org/10.1029/2019SW002221

    Article 

    Google Scholar
     

  • Qian L, Burns AG, Emery BA, Foster B, Lu G, Maute A, Richmond AD, Roble RG, Solomon SC, Wang W (2014) The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system, in Modeling the Ionosphere-Thermosphere System, AGU Geophysical Monograph Series

  • Remsberg EE, Marshall BT, Garcia-Comas M, Krueger D, Lingenfelser GS, Martin-Torres J et al (2008) Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J Geophys Res 113: D17101. https://doi.org/10.1029/2008JD010013

    Article 

    Google Scholar
     

  • Richmond AD, Ridley EC, Roble RG (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett. 6:601–604. https://doi.org/10.1029/92GL00401

    Article 

    Google Scholar
     

  • Sabine E (1847) On the lunar atmospheric tide at St. Helena. Philos Trans Royal Soc London 137:45–50. https://doi.org/10.1098/rstl.1847.0005

    Article 

    Google Scholar
     

  • Salby ML (1982) Sampling theory for asynoptic satellite observations. Part I: Space-time spectra, resolution, and aliasing. J Atmos Sci 39:2577–2601

    Article 

    Google Scholar
     

  • Sassi F, Liu H-L, Ma J, Garcia RR (2013) The lower thermosphere during the northern hemisphere winter of 2009: A modeling study using high-altitude data assimilation products in WACCM-X. J Geophys Res Atmos. 118:8954–8968. https://doi.org/10.1002/jgrd.50632

    Article 

    Google Scholar
     

  • Sathishkumar S, Sridharan S, Jacobi C (2009) Dynamical response of low-latitude middle atmosphere to major sudden stratospheric warming events. J Atmos Solar Terr Phys 71:857–865. https://doi.org/10.1016/j.jastp.2009.04.002

    Article 

    Google Scholar
     

  • Scherhag R (1952) Die explosionsartigen stratosphärenerwärmungen des spätwinters 1951/52. Berichte des deutschen Wetterdienstes in der US-Zone 6(38):51–63


    Google Scholar
     

  • Shepherd MG, Wu DL, Fedulina IN, Gurubaran S, Russell JM, Mlynczak MG, Shepherd GG (2007) Stratospheric warming effects on the tropical mesospheric temperature field. J Atmos Solar Terrestrial Phys 69:2309–2337. https://doi.org/10.1016/j.jastp.2007.04.009

    Article 

    Google Scholar
     

  • Siddiqui TA, Stolle C, LÜhr H, Matzka J (2015) On the relationship between weakening of the northern polar vortex and the lunar tidal amplification in the equatorial electrojet. J Geophys Res Space Phys 120:10006–10019. https://doi.org/10.1002/2015JA021683

    Article 

    Google Scholar
     

  • Siddiqui TA, Maute A, Pedatella NM (2019) On the importance of interactive ozone chemistry in Earth-System models for studying mesophere-lower thermosphere tidal changes during sudden stratospheric warmings. J Geophys Res Space Phys 124(12):10690–10707. https://doi.org/10.1029/2019JA027193

    Article 

    Google Scholar
     

  • Singh D, Gurubaran S (2017) Variability of diurnal tide in the MLT region over Tirunelveli (8.7(^circ )N), India: Consistency between ground- and space-based observations. J Geophys Res Atmos. 122:2696–2713. https://doi.org/10.1002/2016JD025910

    Article 

    Google Scholar
     

  • Siskind DE, Eckermann SD, Coy L, McCormack JP, Randall CE (2007) On recent interannual variability of the Arctic winter mesosphere: implications for tracer descent. Geophys Res Lett. 34:L09806. https://doi.org/10.1029/2007GL029293

    Article 

    Google Scholar
     

  • Siskind DE, Eckermann SD, McCormack JP, Coy L, Hoppel KW, Baker NL (2010) Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings. J Geophys Res 115: D00N03. https://doi.org/10.1029/2010JD014114

    Article 

    Google Scholar
     

  • Sridharan S (2017) Variabilities of low-latitude migrating and nonmigrating tides in GPS-TEC and TIMED-SABER temperature during the sudden stratospheric warming event of 2013. J Geophys Res Space Phys 122:10748–10761. https://doi.org/10.1002/2017JA024283

    Article 

    Google Scholar
     

  • Sridharan S, Tsuda T, Gurubaran S (2010) Long-term tendencies in the mesosphere/lower thermosphere mean winds and tides as observed by medium frequency radar at Tirunelveli (8.7(^circ )N, 77.8(^circ )E). J Geophys Res. 115:D08109. https://doi.org/10.1029/2008JD011609

    Article 

    Google Scholar
     

  • Vincent RA, Kovalam S, Fritts DC, Isler JR (1998) Long-term MF radar observations of solar tides in the low-latitude mesosphere: Interannual variability and comparisons with the GSWM. J Geophys Res-Atmos 103(D8):8667–8683. https://doi.org/10.1029/98jd00482

    Article 

    Google Scholar
     

  • Vitharana A, Zhu X, Du J, Oberheide J, Ward WE (2019) Statistical modeling of tidal weather in the mesosphere and lower thermosphere. J Geophys Res Atmos 124:9011–9027. https://doi.org/10.1029/2019JD030573

    Article 

    Google Scholar
     

  • Waugh DW, Polvani LM (2010) Stratospheric polar vortices. In: The Stratosphere: Dynamics, Transport, and Chemistry. https://doi.org/10.1002/9781118666630.ch3

  • WMO/IQSY (1964). International years of the Quiet Sun (IQSY) 1964-65. Alert messages with special references to stratwarms. WMO/IQSY Report No 6, Secretariat of the World Meteorological Organization, Geneva, Switzerland. World Meteorological Organization

  • Yamazaki Y, Matthias V, Miyoshi Y, Stolle C, Siddiqui T, Kervalishvili G, Alken P (2020) September 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric effects. Geophys Res Lett. 47(1): e2019GL086577. https://doi.org/10.1029/2019GL086577

    Article 

    Google Scholar
     

  • Zhang X, Forbes JM (2014) Lunar tide in the thermosphere and weakening of the northern polar vortex. Geophys Res Lett 41(23):8201–8207. https://doi.org/10.1002/2014GL062103

    Article 

    Google Scholar
     

  • Zhu X, Yee J-H, Talaat ER, Mlynczak M, Gordley L, Mertens C, Russell JM III (2005) An algorithm for extracting zonal mean and migrating tidal fields in the middle atmosphere from satellite measurements: applications to TIMED/SABER measured temperature and tidal modeling. J Geophys Res. 110:D02105. https://doi.org/10.1029/2004JD004996

    Article 

    Google Scholar
     

  • Zuev VV, Savelieva E (2019) The cause of the strengthening of the Antarctic polar vortex during October-November periods. J Atmos Solar Terrestrial Phys 190:1–5. https://doi.org/10.1016/j.jastp.2019.04.016

    Article 

    Google Scholar
     

  • Zülicke C, Becker E (2013) The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. Res Atmos J Geophys. https://doi.org/10.1002/jgrd.50219

    Article 

    Google Scholar
     

  • Zülicke C, Becker E, Matthias V, Peters DHW, Schmidt H, Liu H-L, de la Torre-Ramos L, Mitchell DM (2018) Coupling of stratospheric warmings with mesospheric coolings in observations and simulations. J Clim 31:1107–1133. https://doi.org/10.1175/JCLI-D-17-0047.1

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)