Global and national trends in STI incidence

The numbers of incident cases and positive growth for the 5 STIs from 1990 to 2019 globally were shown in Additional file 1: Table S2. Specifically, the top two countries in terms of incident cases in 2019 were India and China (Additional file 1: Fig. S2 and Table S3). Of 204 countries or territories, there were 163 (79.90%), 168 (82.35%), 149 (73.04%), 189 (92.65%), and 161 (78.92%) countries or territories that experienced positive growth in the number of syphilis, chlamydial, gonococcal, trichomoniasis, and genital herpes incident cases, respectively. Qatar had the greatest growth in incident case numbers among the five STIs from 1990 to 2019 (Additional file 1: Fig. S2 and Table S3).

The global ASRs of syphilis, chlamydia, gonorrhea, trichomoniasis, and genital herpes were 178.48, 2883.87, 1124.39, 4327.29, and 1021.68 per 1000,000 people in 2019 (Tables 1, 2, 3, 4 and 5). Globally, there was initially an increasing trend in the ASR of syphilis from 1990 to 2000. Subsequently, it decreased from 2000 to 2010; however, in the past decade, it increased on average by 1.25% (95% CI 1.06–1.45%) per year from 159.41 per 100,000 people in 2010 to 178.48 per 100,000 people in 2019 (Table 1, Additional file 1: Fig. S1, and Table S4). The trend in the ASR of chlamydia (2010 to 2019: EAPC, 0.40%; 95% CI 0.36–0.44%) from 1990 to 2019 was similar to that of syphilis (Table 2, Additional file 1: Fig. S1, and Table S4). The ASR of trichomoniasis increased from 2000 to 2010; subsequently, it continued to increase on average by 0.27% (95% CI 0.03–0.52%) per year from 4232.24 per 100,000 people in 2010 to 4327.29 per 100,000 people in 2019 worldwide (Table 3 and Additional file 1: Fig. S1). Although there was a downward trend in the ASR of gonococcal infections from 2010 to 2019, an upward trend was seen from 2017 to 2019 (Table 4, Additional file 1: Fig. S1 and Table S4).

Table 1 The age-standardized incidence rates (ASRs, per 100,000 population) of syphilis in 1990, 2010 and 2019, and their temporal trends
Table 2 The age-standardized incidence rates (ASRs, per 100,000 population) of chlamydial infection in 1990, 2010 and 2019, and their temporal trends
Table 3 The age-standardized incidence rates (ASRs, per 100,000 population) of gonococcal infection in 1990, 2010 and 2019, and their temporal trends
Table 4 The age-standardized incidence rates (ASRs, per 100,000 population) of trichomoniasis in 1990, 2010 and 2019, and their temporal trends
Table 5 The age-standardized incidence rates (ASRs, per 100,000 population) of genital herpes in 1990, 2010 and 2019, and their temporal trends

Furthermore, the top countries or territories with the highest ASRs of syphilis, chlamydia, gonorrhea, trichomoniasis, and genital herpes were the Central African Republic, South Africa, South Africa, United Republic of Tanzania, and Zimbabwe, respectively, in 2019 (Additional file 1: Table S3). There were 109, 51, 15, 81, and 204 countries or territories with a trend of increasing ASRs of syphilis, chlamydia, gonorrhea, trichomoniasis, and genital herpes from 2010 to 2019, respectively (Additional file 1: Table S3 and Fig. S2). The greatest increases in ASRs of syphilis, chlamydia, gonorrhea, trichomoniasis, and genital herpes were noted for Brazil (EAPC, 6.23; 95% CI 5.51–6.92), the Marshall Islands (EAPC, 9.85; 95% CI 8.26–11.48), the United Kingdom (EAPC, 1.93; 95% CI 0.71–3.16), Lebanon (EAPC, 2.29; 95% CI 1.49–3.10), and Ethiopia (EAPC, 3.05; 95% CI 1.60–4.53), respectively (Additional file 1: Table S3 and Fig. S2).

Differences in STI incidence across 5 SDI regions

The top 3 regions with growth in the case numbers of 5 STIs included low, low-middle, and middle SDI regions (Additional file 1: Table S1). The ASRs of syphilis, trichomoniasis, and genital herpes were greatest in low SDI regions from 1990 to 2019 (syphilis, 372.53 per 100,000 people; trichomoniasis, 5748.06 per 100,000 people; genital herpes, 1332.24 per 100,000 people in 2019), while the ASRs of chlamydia and gonorrhea were highest in middle SDI regions from 1990 to 2019 (chlamydia, 3477.61 per 100,000 people; gonorrhea, 1225.96 per 100,000 people in 2019) (Tables 1, 2, 3, 4 and 5 and Fig. 1). The SDI regions with a trend of the greatest increase in ASR for syphilis (EAPC, 1.26; 95% CI 1.15–1.36), chlamydia (EAPC, 0.60; 95% CI 0.08–1.12), trichomoniasis (EAPC, 0.28; 95% CI 0.21–0.36), and genital herpes (EAPC, 0.53; 95% CI 0.36–0.69) from 2010 to 2019 were the middle, high-middle, low, and high-middle SDI regions, respectively. The specific values of the trends in 5 STIs in SDI regions are shown in Tables 1, 2, 3, 4 and 5. The age characteristics of ASRs of the 5 STIs in SDI regions are presented in Additional file 1: Fig. S3.

Fig. 1
figure 1

The trends in the incidence rate of sexually transmitted infections by SDI regions from 1990 to 2019

Differences in STI incidence across 21 GBD regions

The numbers of incident cases of syphilis, chlamydia, gonorrhea, trichomoniasis, and genital herpes were highest in South Asia (3.73 million), East Asia (69.21 million), South Asia (22.79 million), East Asia (81.21 million), and East Asia (12.10 million) in 2019, respectively (Additional file 1: Table S1). Greater growth in numbers of syphilis, chlamydia, gonorrhea, trichomoniasis, and genital herpes incident cases was seen in western sub-Saharan Africa (133.05%), western sub-Saharan Africa (152.59%), central sub-Saharan Africa (139.40%), central sub-Saharan Africa (157.30%), and western sub-Saharan Africa (151.97%) from 1990 to 2019 (Additional file 1: Table S1).

The GBD regions with the highest ASRs of syphilis, chlamydia, gonorrhea, trichomoniasis, and genital herpes were central sub-Saharan Africa (1048.40 per 100,000 people), southern sub-Saharan Africa (5324.43 per 100,000 people), southern sub-Saharan Africa (3869.56 per 100,000 people), and southern sub-Saharan Africa (2275.42 per 100,000 people) in 2019 (Tables 1, 2, 3, 4 and 5). From 2010 to 2019, 11, 6, 2, 10, and 5 GBD regions had a trend of increasing ASR for syphilis, chlamydia, gonorrhea, trichomoniasis, and genital herpes, respectively (Tables 1, 2, 3, 4 and 5). Among them, tropical Latin America had the greatest increasing trend (EAPC, 5.72; 95% CI 5.11–6.33) in syphilis cases (Table 1, Fig. 2A); meanwhile, high-income North America had the greatest increase in ASR for chlamydia (EAPC, 1.23; 95% CI 0.73–1.73) (Table 2 and Fig. 2B) and gonorrhea (EAPC, 0.77; 95% CI 0.12–1.41) (Table 3 and Fig. 2C), southern sub-Saharan Africa had the greatest increase in ASR for trichomoniasis (EAPC, 0.88; 95% CI 0.57–1.20) (Table 4 and Fig. 2D), and East Asia had the greatest increase in ASR for genital herpes (EAPC, 1.44; 95% CI 0.83–2.06) (Table 5 and Fig. 2E).

Fig. 2
figure 2

EAPCs of ASRs on STIs from 1990 to 2000, 2000 to 2010 and 2010 to 2019 by region. A syphilis, B chlamydia, C gonorrhea, D trichomoniasis, E genital herpes; EAPCs estimated annual percentage changes, ASR age-standardized incidence rate, CI confidence interval, SDI sociodemographic index

In the most recent years, the population with the highest incidence of syphilis tended to be younger globally (25–29 years in 2010 vs. 20–24 years in 2019) but older in North Africa and the Middle East (20–24 years in 2010 vs. 25–29 years in 2019) in 2019 (Fig. 3). Additionally, for chlamydia, population tended to be older in southern sub-Saharan Africa (25–29 years in 2010 vs. 30–34 years in 2019) but younger in Australasia (40–44 years in 2010 vs. 25–29 years in 2019) (Fig. 4). Among gonorrhea and trichomoniasis cases, the characteristics of age were not recorded (Additional file 1: Figs. S4, S5). Population with genital herpes tended to be older in high-income North America (20–24 years in 2010 vs. 25–29 years in 2019) and South Asia (25–29 years in 2019 vs. 30–34 years in 2019) in 2019 (Additional file 1: Fig. S6).

Fig. 3
figure 3

Incidence rate of syphilis by age groups and GBD regions, from 1990 to 2019

Fig. 4
figure 4

Incidence rate of chlamydia by age groups and GBD regions, from 1990 to 2019

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Disclaimer:

This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

Click here for Source link (https://www.biomedcentral.com/)