• Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med. 2017;377(2):162–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015;6(1):171.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K, et al. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(6):623–7.

    PubMed 
    Article 

    Google Scholar
     

  • Abel O, Powell JF, Andersen PM, Al-Chalabi A. ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat. 2012;33(9):1345–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su WM, Cheng YF, Jiang Z, Duan QQ, Yang TM, Shang HF, et al. Predictors of survival in patients with amyotrophic lateral sclerosis: A large meta-analysis. EBioMedicine. 2021;74:103732.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Diekstra FP, van Vught PW, van Rheenen W, Koppers M, Pasterkamp RJ, van Es MA, et al. UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33(3):630.e633–8.

    Article 
    CAS 

    Google Scholar
     

  • Fogh I, Lin K, Tiloca C, Rooney J, Gellera C, Diekstra FP, et al. Association of a Locus in the CAMTA1 Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurol. 2016;73(7):812–20.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chiò A, Mora G, Restagno G, Brunetti M, Ossola I, Barberis M, et al. UNC13A influences survival in Italian amyotrophic lateral sclerosis patients: a population-based study. Neurobiol Aging. 2013;34(1):357.e351–5.

    Article 
    CAS 

    Google Scholar
     

  • Sabatelli M, Conforti FL, Zollino M, Mora G, Monsurrò MR, Volanti P, et al. C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population. Neurobiol Aging. 2012;33(8):1848.e1815–20.

    Article 
    CAS 

    Google Scholar
     

  • Miltenberger-Miltenyi G, Conceição VA, Gromicho M, Pronto-Laborinho AC, Pinto S, Andersen PM, et al. C9orf72 expansion is associated with accelerated decline of respiratory function and decreased survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(1):118–20.

    PubMed 
    Article 

    Google Scholar
     

  • Hübers A, Just W, Rosenbohm A, Müller K, Marroquin N, Goebel I, et al. De novo FUS mutations are the most frequent genetic cause in early-onset German ALS patients. Neurobiol Aging. 2015;36(11):3117.e3111–6.

    Article 
    CAS 

    Google Scholar
     

  • Corcia P, Valdmanis P, Millecamps S, Lionnet C, Blasco H, Mouzat K, et al. Phenotype and genotype analysis in amyotrophic lateral sclerosis with TARDBP gene mutations. Neurology. 2012;78(19):1519–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen YP, Yu SH, Wei QQ, Cao B, Gu XJ, Chen XP, et al. Role of genetics in amyotrophic lateral sclerosis: a large cohort study in Chinese mainland population. J Med Genet. 2021. https://doi.org/10.1136/jmedgenet-2021-107965.

  • Jansen JP, Trikalinos T, Cappelleri JC, Daw J, Andes S, Eldessouki R, et al. Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform health care decision making: an ISPOR-AMCP-NPC Good Practice Task Force report. Value Health. 2014;17(2):157–73.

    PubMed 
    Article 

    Google Scholar
     

  • Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.

    PubMed 
    Article 

    Google Scholar
     

  • Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cudkowicz ME, van den Berg LH, Shefner JM, Mitsumoto H, Mora JS, Ludolph A, et al. Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial. Lancet Neurol. 2013;12(11):1059–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012;3:CD001447.

  • Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Woods BS, Hawkins N, Scott DA. Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: a tutorial. BMC Med Res Methodol. 2010;10:54.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    PubMed 
    Article 

    Google Scholar
     

  • Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010;29(7-8):932–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64(2):163–71.

    PubMed 
    Article 

    Google Scholar
     

  • Borghero G, Pugliatti M, Marrosu F, Marrosu MG, Murru MR, Floris G, et al. ATXN2 is a modifier of phenotype in ALS patients of Sardinian ancestry. Neurobiol Aging. 2015;36(10):2906.e2901–5.

    Article 
    CAS 

    Google Scholar
     

  • Chiò A, Calvo A, Moglia C, Canosa A, Brunetti M, Barberis M, et al. ATXN2 polyQ intermediate repeats are a modifier of ALS survival. Neurology. 2015;84(3):251–8.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Byrne S, Elamin M, Bede P, Shatunov A, Walsh C, Corr B, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 2012;11(3):232–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ratti A, Corrado L, Castellotti B, Del Bo R, Fogh I, Cereda C, et al. C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect. Neurobiol Aging. 2012;33(10):2528.e2527–14.

    Article 
    CAS 

    Google Scholar
     

  • van Rheenen W, van Blitterswijk M, Huisman MH, Vlam L, van Doormaal PT, Seelen M, et al. Hexanucleotide repeat expansions in C9ORF72 in the spectrum of motor neuron diseases. Neurology. 2012;79(9):878–82.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Millecamps S, Boillee S, Le Ber I, Seilhean D, Teyssou E, Giraudeau M, et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet. 2012;49(4):258–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Debray S, Race V, Crabbé V, Herdewyn S, Matthijs G, Goris A, et al. Frequency of C9orf72 repeat expansions in amyotrophic lateral sclerosis: a Belgian cohort study. Neurobiol Aging. 2013;34(12):2890.e2897–12.

    Article 
    CAS 

    Google Scholar
     

  • García-Redondo A, Dols-Icardo O, Rojas-García R, Esteban-Pérez J, Cordero-Vázquez P, Muñoz-Blanco JL, et al. Analysis of the C9orf72 gene in patients with amyotrophic lateral sclerosis in Spain and different populations worldwide. Hum Mutat. 2013;34(1):79–82.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Irwin DJ, McMillan CT, Brettschneider J, Libon DJ, Powers J, Rascovsky K, et al. Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2013;84(2):163–9.

    PubMed 
    Article 

    Google Scholar
     

  • Van Laere K, Vanhee A, Verschueren J, De Coster L, Driesen A, Dupont P, et al. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA Neurol. 2014;71(5):553–61.

    PubMed 
    Article 

    Google Scholar
     

  • Calvo A, Canosa A, Bertuzzo D, Cugnasco P, Solero L, Clerico M, et al. Influence of cigarette smoking on ALS outcome: a population-based study. J Neurol Neurosurg Psychiatry. 2016;87(11):1229–33.

    PubMed 
    Article 

    Google Scholar
     

  • Umoh ME, Fournier C, Li Y, Polak M, Shaw L, Landers JE, et al. Comparative analysis of C9orf72 and sporadic disease in an ALS clinic population. Neurology. 2016;87(10):1024–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gendron TF, Daughrity LM, Heckman MG, Diehl NN, Wuu J, Miller TM, et al. Phosphorylated neurofilament heavy chain: A biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol. 2017;82(1):139–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reniers W, Schrooten M, Claeys KG, Tilkin P, D’Hondt A, Van Reijen D, et al. Prognostic value of clinical and electrodiagnostic parameters at time of diagnosis in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(5-6):341–50.

    PubMed 
    Article 

    Google Scholar
     

  • Cammack AJ, Atassi N, Hyman T, van den Berg LH, Harms M, Baloh RH, et al. Prospective natural history study of C9orf72 ALS clinical characteristics and biomarkers. Neurology. 2019;93(17):e1605–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rooney J, Murray D, Campion A, Moloney H, Tattersall R, Doherty M, et al. The C9orf72 expansion is associated with accelerated respiratory function decline in a large Amyotrophic Lateral Sclerosis cohort. HRB Open Res. 2019;2:23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Trojsi F, Siciliano M, Femiano C, Santangelo G, Lunetta C, Calvo A, et al. Comparative Analysis of C9orf72 and Sporadic Disease in a Large Multicenter ALS Population: The Effect of Male Sex on Survival of C9orf72 Positive Patients. Front Neurosci. 2019;13:485.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Benatar M, Zhang L, Wang L, Granit V, Statland J, Barohn R, et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology. 2020;95(1):e59–69.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Schaepdryver M, Lunetta C, Tarlarini C, Mosca L, Chio A, Van Damme P, et al. Neurofilament light chain and C reactive protein explored as predictors of survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2020;91(4):436–7.

    PubMed 
    Article 

    Google Scholar
     

  • Kläppe U, Chamoun S, Shen Q, Finn A, Evertsson B, Zetterberg H, et al. Cardiac troponin T is elevated and increases longitudinally in ALS patients. Amyotroph Lateral Scler Frontotemporal Degener. 2022;23(1-2):58–65.

  • Puentes F, Lombardi V, Lu CH, Yildiz O, Fratta P, Isaacs A, et al. Humoral response to neurofilaments and dipeptide repeats in ALS progression. Ann Clin Transl Neurol. 2021;8(9):1831–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cudkowicz ME, McKenna-Yasek D, Sapp PE, Chin W, Geller B, Hayden DL, et al. Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol. 1997;41(2):210–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu W, Li X, Sun Y, Yu X, Wang Y, Liu N, et al. Genotype-phenotype correlations in a chinese population with familial amyotrophic lateral sclerosis. Neurol Res. 2022;44(3):206–16.

  • Lattante S, Conte A, Zollino M, Luigetti M, Del Grande A, Marangi G, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology. 2012;79(1):66–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Borghero G, Pugliatti M, Marrosu F, Marrosu MG, Murru MR, Floris G, et al. Genetic architecture of ALS in Sardinia. Neurobiol Aging. 2014;35(12):2882.e2887–12.

    Article 
    CAS 

    Google Scholar
     

  • Millecamps S, Salachas F, Cazeneuve C, Gordon P, Bricka B, Camuzat A, et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet. 2010;47(8):554–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chiò A, Borghero G, Restagno G, Mora G, Drepper C, Traynor BJ, et al. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain. 2012;135(Pt 3):784–93.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McCann EP, Williams KL, Fifita JA, Tarr IS, O’Connor J, Rowe DB, et al. The genotype-phenotype landscape of familial amyotrophic lateral sclerosis in Australia. Clin Genet. 2017;92(3):259–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Govaarts R, Beeldman E, Kampelmacher MJ, van Tol MJ, van den Berg LH, van der Kooi AJ, et al. The frontotemporal syndrome of ALS is associated with poor survival. J Neurol. 2016;263(12):2476–83.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brand D, Polak M, Glass JD, Fournier CN. Comparison of Phenotypic Characteristics and Prognosis Between Black and White Patients in a Tertiary ALS Clinic. Neurology. 2021;96(6):e840–4.

    PubMed 
    Article 

    Google Scholar
     

  • Ammar Al-Chalabi ZEE, Bakker MC, et al. Association of apolipoprotein E4 allele with bulbar-onset motor neuron disease. Lancet. 1996;347:159–60.

    Article 

    Google Scholar
     

  • Drory VE, Birnbaum M, Korczyn AD, Chapman J. Association of APOE epsilon4 allele with survival in amyotrophic lateral sclerosis. J Neurol Sci. 2001;190(1-2):17–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM. Association of APOE with age at onset of sporadic amyotrophic lateral sclerosis. J Neurol Sci. 2008;273(1-2):67–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steenland K, MacNeil J, Seals R, Levey A. Factors affecting survival of patients with neurodegenerative disease. Neuroepidemiology. 2010;35(1):28–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vidal-Taboada JM, Lopez-Lopez A, Salvado M, Lorenzo L, Garcia C, Mahy N, et al. UNC13A confers risk for sporadic ALS and influences survival in a Spanish cohort. J Neurol. 2015;262(10):2285–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tan HHG, Westeneng HJ, van der Burgh HK, van Es MA, Bakker LA, van Veenhuijzen K, et al. The Distinct Traits of the UNC13A Polymorphism in Amyotrophic Lateral Sclerosis. Ann Neurol. 2020;88(4):796–806.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tetsuka S, Morita M, Iida A, Ikegawa S, Nakano I. ZNF512B gene serves as a prognostic factor in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13:122.


    Google Scholar
     

  • Yu CJ, Wang L, Mao SL, Zhang Y, Song LL, Cai LY, et al. The clinical assessment of amyotrophic lateral sclerosis patients’ prognosis by ZNF512B gene, neck flexor muscle power score and body mass index (BMI). BMC Neurol. 2018;18(1):211.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang H, Yang B, Wang F, Li K, Zhu Y, Liu B, et al. Association of Single Nucleotide Polymorphism at rs2275294 in the ZNF512B Gene with Prognosis in Amyotrophic Lateral Sclerosis. Neuromolecular Med. 2021;23(2):242–6.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Landers JE, Melki J, Meininger V, Glass JD, van den Berg LH, van Es MA, et al. Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2009;106(22):9004–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Traynor BJ, Nalls M, Lai SL, Gibbs RJ, Schymick JC, Arepalli S, et al. Kinesin-associated protein 3 (KIFAP3) has no effect on survival in a population-based cohort of ALS patients. Proc Natl Acad Sci U S A. 2010;107(27):12335–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Orsetti V, Pegoraro E, Cima V, D’Ascenzo C, Palmieri A, Querin G, et al. Genetic variation in KIFAP3 is associated with an upper motor neuron-predominant phenotype in amyotrophic lateral sclerosis. Neurodegener Dis. 2011;8(6):491–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van Doormaal PT, Ticozzi N, Gellera C, Ratti A, Taroni F, Chiò A, et al. Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study. Neurobiol Aging. 2014;35(10):2420.e2413–24.


    Google Scholar
     

  • Czell D, Sapp PC, Neuwirth C, Weber M, Andersen PM, Brown RH. Further analysis of KIFAP3 gene in ALS patients from Switzerland and Sweden. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(3-4):302–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gamez J, Barceló MJ, Muñoz X, Carmona F, Cuscó I, Baiget M, et al. Survival and respiratory decline are not related to homozygous SMN2 deletions in ALS patients. Neurology. 2002;59(9):1456–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lopez-Lopez A, Gamez J, Syriani E, Morales M, Salvado M, Rodríguez MJ, et al. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One. 2014;9(5):e96528.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Calvo A, Moglia C, Canosa A, Cammarosano S, Ilardi A, Bertuzzo D, et al. Common polymorphisms of chemokine (C-X3-C motif) receptor 1 gene modify amyotrophic lateral sclerosis outcome: A population-based study. Muscle Nerve. 2018;57(2):212–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vidal-Taboada JM, Pugliese M, Salvadó M, Gámez J, Mahy N, Rodríguez MJ. K(ATP) Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis. Mol Neurobiol. 2018;55(10):7962–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mouzat K, Molinari N, Kantar J, Polge A, Corcia P, Couratier P, et al. Liver X Receptor Genes Variants Modulate ALS Phenotype. Mol Neurobiol. 2018;55(3):1959–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sleegers K, Brouwers N, Maurer-Stroh S, van Es MA, Van Damme P, van Vught PW, et al. Progranulin genetic variability contributes to amyotrophic lateral sclerosis. Neurology. 2008;71(4):253–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • El Oussini H, Bayer H, Scekic-Zahirovic J, Vercruysse P, Sinniger J, Dirrig-Grosch S, et al. Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis. Acta Neuropathol. 2016;131(3):465–80.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Theunissen F, Anderton RS, Mastaglia FL, Flynn LL, Winter SJ, James I, et al. Novel STMN2 Variant Linked to Amyotrophic Lateral Sclerosis Risk and Clinical Phenotype. Front Aging Neurosci. 2021;13:658226.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu L, Tian D, Li J, Chen L, Tang L, Fan D. The Analysis of Two BDNF Polymorphisms G196A/C270T in Chinese Sporadic Amyotrophic Lateral Sclerosis. Front Aging Neurosci. 2017;9:135.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • He J, Fu J, Fan D. The complement C7 variant rs3792646 is associated with amyotrophic lateral sclerosis in a Han Chinese population. Neurobiol Aging. 2021;99:103.e101–7.

    Article 
    CAS 

    Google Scholar
     

  • Diekstra FP, Beleza-Meireles A, Leigh NP, Shaw CE, Al-Chalabi A. Interaction between PON1 and population density in amyotrophic lateral sclerosis. NeuroReport. 2009;20(2):186–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verde F, Tiloca C, Morelli C, Doretti A, Poletti B, Maderna L, et al. PON1 is a disease modifier gene in amyotrophic lateral sclerosis: association of the Q192R polymorphism with bulbar onset and reduced survival. Neurol Sci. 2019;40(7):1469–73.

    PubMed 
    Article 

    Google Scholar
     

  • Blauw HM, van Rheenen W, Koppers M, Van Damme P, Waibel S, Lemmens R, et al. NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21(11):2497–502.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blasco H, Vourc’h P, Nadjar Y, Ribourtout B, Gordon PH, Guettard YO, et al. Association between divalent metal transport 1 encoding gene (SLC11A2) and disease duration in amyotrophic lateral sclerosis. J Neurol Sci. 2011;303(1-2):124–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Sousa Barros JB, de Faria SK, da Cruz Pereira Bento D, Prado Assunção LD, da Silva Santos R, da Silva Reis AA. Influence of GSTP1 rs1695 polymorphism on survival in male patients’ amyotrophic lateral sclerosis: a genetic association study in Brazilian population. Mol Biol Rep. 2022;49(2):1655–9.

  • Al-Chalabi A, Scheffler MD, Smith BN, Parton MJ, Cudkowicz ME, Andersen PM, et al. Ciliary neurotrophic factor genotype does not influence clinical phenotype in amyotrophic lateral sclerosis. Ann Neurol. 2003;54(1):130–4.

    PubMed 
    Article 

    Google Scholar
     

  • Van Vught PW, Van Wijk J, Bradley TE, Plasmans D, Jakobs ME, Veldink JH, et al. Ciliary neurotrophic factor null alleles are not a risk factor for Charcot-Marie-Tooth disease, hereditary neuropathy with pressure palsies and amyotrophic lateral sclerosis. Neuromuscul Disord. 2007;17(11-12):964–7.

    PubMed 
    Article 

    Google Scholar
     

  • Yang X, Zheng J, Tian S, Chen Y, An R, Zhao Q, et al. HLA-DRA/HLA-DRB5 polymorphism affects risk of sporadic ALS and survival in a southwest Chinese cohort. J Neurol Sci. 2017;373:124–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moisse M, Zwamborn RAJ, van Vugt J, van der Spek R, van Rheenen W, Kenna B, et al. The Effect of SMN Gene Dosage on ALS Risk and Disease Severity. Ann Neurol. 2021;89(4):686–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, et al. Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet. 2011;20(9):1697–700.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van Damme P, Veldink JH, van Blitterswijk M, Corveleyn A, van Vught PW, Thijs V, et al. Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology. 2011;76(24):2066–72.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Daoud H, Belzil V, Martins S, Sabbagh M, Provencher P, Lacomblez L, et al. Association of long ATXN2 CAG repeat sizes with increased risk of amyotrophic lateral sclerosis. Arch Neurol. 2011;68(6):739–42.

    PubMed 
    Article 

    Google Scholar
     

  • Corrado L, Mazzini L, Oggioni GD, Luciano B, Godi M, Brusco A, et al. ATXN-2 CAG repeat expansions are interrupted in ALS patients. Hum Genet. 2011;130(4):575–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lahut S, Omur O, Uyan O, Agim ZS, Ozoguz A, Parman Y, et al. ATXN2 and its neighbouring gene SH2B3 are associated with increased ALS risk in the Turkish population. PLoS One. 2012;7(8):e42956.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen Y, Huang R, Yang Y, Chen K, Song W, Pan P, et al. Ataxin-2 intermediate-length polyglutamine: a possible risk factor for Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2011;32(10):1925 e1921–5.

    Article 
    CAS 

    Google Scholar
     

  • Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron. 2020;108(5):822–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88(7):540–9.

    PubMed 
    Article 

    Google Scholar
     

  • Freibaum BD, Taylor JP. The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Front Mol Neurosci. 2017;10:35.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ekhtiari Bidhendi E, Bergh J, Zetterstrom P, Forsberg K, Pakkenberg B, Andersen PM, et al. Mutant superoxide dismutase aggregates from human spinal cord transmit amyotrophic lateral sclerosis. Acta Neuropathol. 2018;136(6):939–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharma A, Lyashchenko AK, Lu L, Nasrabady SE, Elmaleh M, Mendelsohn M, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7:10465.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 2008;7(5):409–16.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cui R, Tuo M, Li P, Zhou C. Association between TBK1 mutations and risk of amyotrophic lateral sclerosis/frontotemporal dementia spectrum: a meta-analysis. Neurol Sci. 2018;39(5):811–20.

    PubMed 
    Article 

    Google Scholar
     

  • Oakes JA, Davies MC, Collins MO. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain. 2017;10(1):5.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yao L, He X, Cui B, Zhao F, Zhou C. NEK1 mutations and the risk of amyotrophic lateral sclerosis (ALS): a meta-analysis. Neurol Sci. 2021;42(4):1277–85.

    PubMed 
    Article 

    Google Scholar
     

  • Higelin J, Catanese A, Semelink-Sedlacek LL, Oeztuerk S, Lutz AK, Bausinger J, et al. NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient-derived motoneurons. Stem Cell Res. 2018;30:150–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McLaughlin RL, Kenna KP, Vajda A, Byrne S, Bradley DG, Hardiman O. UBQLN2 mutations are not a frequent cause of amyotrophic lateral sclerosis in Ireland. Neurobiol Aging. 2014;35(1):267 e269–11.

    Article 
    CAS 

    Google Scholar
     

  • Wu JJ, Cai A, Greenslade JE, Higgins NR, Fan C, Le NTT, et al. ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc Natl Acad Sci U S A. 2020;117(26):15230–41.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pan C, Jiao B, Xiao T, Hou L, Zhang W, Liu X, et al. Mutations of CCNF gene is rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia from Mainland China. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(3-4):265–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Williams KL, Topp S, Yang S, Smith B, Fifita JA, Warraich ST, et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun. 2016;7:11253.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fernandez M, McClain ME, Martinez RA, Snow K, Lipe H, Ravits J, et al. Late-onset SCA2: 33 CAG repeats are sufficient to cause disease. Neurology. 2000;55(4):569–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang MD, Gomes J, Cashman NR, Little J, Krewski D. Intermediate CAG repeat expansion in the ATXN2 gene is a unique genetic risk factor for ALS–a systematic review and meta-analysis of observational studies. PLoS One. 2014;9(8):e105534.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • van Blitterswijk M, Mullen B, Heckman MG, Baker MC, DeJesus-Hernandez M, Brown PH, et al. Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiol Aging. 2014;35(10):2421.e2413–27.


    Google Scholar
     

  • Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rohrer JD, Isaacs AM, Mizielinska S, Mead S, Lashley T, Wray S, et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 2015;14(3):291–301.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen Y, Lin Z, Chen X, Cao B, Wei Q, Ou R, et al. Large C9orf72 repeat expansions are seen in Chinese patients with sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2016;38:217 e215–22.

    Article 
    CAS 

    Google Scholar
     

  • Yang T, Hou Y, Li C, Cao B, Cheng Y, Wei Q, et al. Risk factors for cognitive impairment in amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2021;92(7):688–93.

    PubMed 
    Article 

    Google Scholar
     

  • Hu J, Rigo F, Prakash TP, Corey DR. Recognition of c9orf72 Mutant RNA by Single-Stranded Silencing RNAs. Nucleic Acid Ther. 2017;27(2):87–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martier R, Liefhebber JM, Miniarikova J, van der Zon T, Snapper J, Kolder I, et al. Artificial MicroRNAs Targeting C9orf72 Can Reduce Accumulation of Intra-nuclear Transcripts in ALS and FTD Patients. Mol Ther Nucleic Acids. 2019;14:593–608.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bali T, Self W, Liu J, Siddique T, Wang LH, Bird TD, et al. Defining SOD1 ALS natural history to guide therapeutic clinical trial design. J Neurol Neurosurg Psychiatry. 2017;88(2):99–105.

    PubMed 
    Article 

    Google Scholar
     

  • Arisato T, Okubo R, Arata H, Abe K, Fukada K, Sakoda S, et al. Clinical and pathological studies of familial amyotrophic lateral sclerosis (FALS) with SOD1 H46R mutation in large Japanese families. Acta Neuropathol. 2003;106(6):561–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naumann M, Peikert K, Günther R, van der Kooi AJ, Aronica E, Hübers A, et al. Phenotypes and malignancy risk of different FUS mutations in genetic amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2019;6(12):2384–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):459–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18(5):631–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chia R, Chio A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018;17(1):94–102.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lattante S, Doronzio PN, Conte A, Marangi G, Martello F, Bisogni G, et al. Novel variants and cellular studies on patients’ primary fibroblasts support a role for NEK1 missense variants in ALS pathogenesis. Hum Mol Genet. 2021;30(1):65–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calvo A, Restagno G, Brunetti M, Ossola I, Majounie E, Renton AE, et al. UNC13A influences survival in an Italian population-based series. Eur J Neurol. 2012;19:262.


    Google Scholar
     

  • Diekstra FP, Van Deerlin VM, van Swieten JC, Al-Chalabi A, Ludolph AC, Weishaupt JH, et al. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Ann Neurol. 2014;76(1):120–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang B, Jiang H, Wang F, Li S, Wu C, Bao J, et al. UNC13A variant rs12608932 is associated with increased risk of amyotrophic lateral sclerosis and reduced patient survival: a meta-analysis. Neurol Sci. 2019;40(11):2293–302.

    PubMed 
    Article 

    Google Scholar
     

  • Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC, et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022;603:131–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma XR, Prudencio M, Koike Y, Vatsavayai SC, Kim G, Harbinski F, et al. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature. 2022;603:124–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ning P, Yang X, Yang B, Zhao Q, Huang H, An R, et al. Meta-analysis of the association between ZNF512B polymorphism rs2275294 and risk of amyotrophic lateral sclerosis. Neurol Sci. 2018;39(7):1261–6.

    PubMed 
    Article 

    Google Scholar
     

  • Schober A, Peterziel H, von Bartheld CS, Simon H, Krieglstein K, Unsicker K. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis. 2007;25(2):378–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Veldink JH, van den Berg LH, Cobben JM, Stulp RP, De Jong JM, Vogels OJ, et al. Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS. Neurology. 2001;56(6):749–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van Rheenen W, van der Spek RAA, Bakker MK, van Vugt J, Hop PJ, Zwamborn RAJ, et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet. 2021;53(12):1636–48.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)