• Hill JL, Vasconez HC. Midfacial fractures. Ferraro’s Fundamentals of Maxillofacial Surgery: Springer; 2015. p. 185–190.

  • Fuessinger MA, Schwarz S, Gass M, Poxleitner P, Brandenburg L, Schlager S, et al. The statistical shape model as a quality assurance measure in the treatment of complex midface fractures: a case control study. Head & Face Medicine. 2021;17(1):1–7.

    Article 

    Google Scholar
     

  • Ghosh R, Kulandaswamy G. Facial fractures. J Craniofac Surg. 2018;29:e334–40.

    Article 

    Google Scholar
     

  • Oh J-h. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofac Plast Reconstr Surg. 2018;40(1):1–7.

    Article 

    Google Scholar
     

  • Bell RB. Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral and Maxillofacial Surg Clin. 2010;22(1):135–56.

    Article 

    Google Scholar
     

  • Kodym O, Španěl M, Herout A. Skull shape reconstruction using cascaded convolutional networks. Comput Biol Med. 2020;123:103886.

    Article 

    Google Scholar
     

  • Schramm A, Suarez-Cunqueiro M, Rücker M, Kokemueller H, Bormann KH, Metzger M, et al. Computer-assisted therapy in orbital and mid-facial reconstructions. Int J Med Robot. 2009;5(2):111–24.

    CAS 
    Article 

    Google Scholar
     

  • Ramanathan M, Panneerselvam E, Raja VKK. 3D planning in mandibular fractures using CAD/CAM surgical splints—A prospective randomized controlled clinical trial. J Craniomaxillofac Surg. 2020;48(4):405–12.

    Article 

    Google Scholar
     

  • Fuessinger MA, Schwarz S, Neubauer J, Cornelius C-P, Gass M, Poxleitner P, et al. Virtual reconstruction of bilateral midfacial defects by using statistical shape modeling. J Craniomaxillofac Surg. 2019;47(7):1054–9.

    Article 

    Google Scholar
     

  • Ehrenfeld M, Manson PN, Prein J. Principles of internal fixation of the craniomaxillofacial skeleton.Trauma and Orthognathic Surgery: Thieme; 2012.

  • Rückschloß T, Ristow O, Kühle R, Weichel F, Roser C, Aurin K, et al. Accuracy of laser-melted patient-specific implants in genioplasty—A three-dimensional retrospective study. J Craniomaxillofac Surg. 2020;48(7):653–60.

    Article 

    Google Scholar
     

  • Buonamici F, Furferi R, Genitori L, Governi L, Marzola A, Mussa F, et al. Reverse engineering techniques for virtual reconstruction of defective skulls: an overview of existing approaches. Comput Aided Des Appl. 2018;16(1):103–12.

    Article 

    Google Scholar
     

  • Gass M, Füßinger MA, Metzger MC, Schwarz S, Bähr JD, Brandenburg L, et al. Virtual reconstruction of orbital floor defects using a statistical shape model. J Anat. 2022;240(2):323–9.

    Article 

    Google Scholar
     

  • Hierl T, Doerfler HM, Huempfner-Hierl H, Kruber D. Evaluation of the Midface by Statistical Shape Modeling. J Oral Maxillofac Surg. 2021;79(1):202.e1–202.e6.

    Article 

    Google Scholar
     

  • Verma S, Gonzalez M, Schow SR, Triplett RG. Virtual Preoperative Planning and Intraoperative Navigation in Facial Prosthetic Reconstruction: A Technical Note. Int J Oral Maxillofac Implants. 2017;32(2):e77–81.

    Article 

    Google Scholar
     

  • Egger J, Gall M, Tax A, Ücal M, Zefferer U, Li X, et al. Interactive reconstructions of cranial 3D implants under MeVisLab as an alternative to commercial planning software. PLoS ONE. 2017;12(3):e0172694.

    Article 

    Google Scholar
     

  • Kwon T-G, Park H-S, Ryoo H-M, Lee S-H. A comparison of craniofacial morphology in patients with and without facial asymmetry—a three-dimensional analysis with computed tomography. Int J Oral Maxillofac Surg. 2006;35(1):43–8.

    Article 

    Google Scholar
     

  • Wagner MEH, Lichtenstein JT, Winkelmann M, Shin HO, Gellrich NC, Essig H. Development and first clinical application of automated virtual reconstruction of unilateral midface defects. J Craniomaxillofac Surg. 2015;43(8):1340–7.

    Article 

    Google Scholar
     

  • Buonamici F, Furferi R, Genitori L, Governi L, Marzola A, Mussa F, et al. Reverse Engineering Techniques for Virtual Reconstruction of Defective Skulls: an Overview of Existing Approaches. Comput-Aided Des Appl. 2018;16(1):103–12.

    Article 

    Google Scholar
     

  • Barragan-Montero A, Javaid U, Valdes G, Nguyen D, Desbordes P, Macq B, et al. Artificial intelligence and machine learning for medical imaging: A technology review. Phys Med. 2021;83:242–56.

    Article 

    Google Scholar
     

  • Chang AX, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, et al. Shapenet: An information-rich 3d model repository. Technical Report arXiv. 2015:1512.03012.

  • Lan L, You L, Zhang Z, Fan Z, Zhao W, Zeng N, et al. Generative adversarial networks and its applications in biomedical informatics. Front Public Health. 2020;8:164.

    Article 

    Google Scholar
     

  • Litany O, Bronstein A, Bronstein M, Makadia A, editors. Deformable shape completion with graph convolutional autoencoders. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018;1886–95.

  • Yuan Z, Jiang M, Wang Y, Wei B, Li Y, Wang P, et al. SARA-GAN: Self-Attention and Relative Average Discriminator Based Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. Front Neuroinform. 2020;14:58.

    Article 

    Google Scholar
     

  • He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–8.

  • He K, Zhang X, Ren S, Sun J, editors. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision. 2015;1026–34.

  • Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, et al. Automatic differentiation in pytorch. In: NIPS Workshop. 2017. p. 4–9.


    Google Scholar
     

  • Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv. 2014:1412.6980.

  • Gui H, Yang H, Zhang S, Shen SG, Ye M, Schmelzeisen R. Mirroring Tool: The Simplest Computer-Aided Simulation Technology? J Craniofac Surg. 2015;26(7):2115–9.

    Article 

    Google Scholar
     

  • Wei G, Wang J, Lu M, Wu J, Wei C. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access. 2019;7:159069–80.

    Article 

    Google Scholar
     

  • Xiao D, Lian C, Wang L, Deng H, Lin HY, Thung KH, et al. Estimating Reference Shape Model for Personalized Surgical Reconstruction of Craniomaxillofacial Defects. IEEE Trans Biomed Eng. 2021;68(2):362–73.

    Article 

    Google Scholar
     

  • Steinbacher DM. Three-Dimensional Analysis and Surgical Planning in Craniomaxillofacial Surgery. J Oral Maxillofac Surg. 2015;73(12):S40–56.

    Article 

    Google Scholar
     

  • Semper-Hogg W, Fuessinger MA, Schwarz S, Ellis E 3rd, Cornelius CP, Probst F, et al. Virtual reconstruction of midface defects using statistical shape models. Journal of Cranio-Maxillofacial Surgery. 2017;45(4):461–6.

    Article 

    Google Scholar
     

  • Xiao D, Wang L, Deng H, Thung KH, Zhu J, Yuan P, et al. Estimating Reference Bony Shape Model for Personalized Surgical Reconstruction of Posttraumatic Facial Defects. Med Image Comput Comput Assist Interv. 2019;11768:327–35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodym O, Spanel M, Herout A. Deep learning for cranioplasty in clinical practice: Going from synthetic to real patient data. Comput Biol Med. 2021;137:104766.

    Article 

    Google Scholar
     

  • Kim T-Y, Baik J-S, Park J-Y, Chae H-S, Huh K-H, Choi S-C. Determination of midsagittal plane for evaluation of facial asymmetry using three-dimensional computed tomography. Imaging science in dentistry. 2011;41(2):79–84.

    CAS 
    Article 

    Google Scholar
     

  • Wong R, Chau A, Hägg U. 3D CBCT McNamara’s cephalometric analysis in an adult southern Chinese population. Int J Oral Maxillofac Surg. 2011;40(9):920–5.

    CAS 
    Article 

    Google Scholar
     

  • Özer CM, Öz II, Serifoglu I, Büyükuysal MÇ, Barut Ç. Evaluation of eyeball and orbit in relation to gender and age. J Craniofac Surg. 2016;27(8):e793–800.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)