The number of BLCA patients worldwide is increasing, and the prognosis of bladder cancer patients varies according to race, gender. With the continuous development of molecular biotechnology in the field of oncology, we look forward to finding more accurate markers for predicting patient prognosis at the molecular level.

As we all know, immunity and autophagy play important roles in tumor formation and progression. For one thing, the immune system monitors and eliminates tumor cells, which is essential to prevent the occurrence and development of tumors. For another, with the development of tumors and other factors, the immune system’s ability to eliminate tumor cells decreases. Autophagy controls tumor cell proliferation and inhibits angiogenesis to achieve tumor suppressor effect. Meanwhile, autophagy may increase the stress ability of tumor cells to help them escape from the dead.

In the present study, patients with BLCA were divided into 6 molecular subtypes based on 2208 immune and autophagy-related genes. These 6 subtypes had significant differences in prognosis. For further analysis, we combined the 6 subtypes into two groups with significantly different prognosis based on the prognosis, and identified 65 DEGs in these two groups. The enrichment analysis of GO and KEGG revealed the DEGs were closely connected with the occurrence and development of tumors. Then, we established a prognostic risk model through univariate Cox and multivariate Cox stepwise regression analysis. According to internal and external validations, the risk model composed of C5AR2, CD96, CSF3R, FBXW10, FCAR, GHR, IL10, MEFV, OLR1, PGLYRP3, RASGRP4, S100A12, T cells CD8, Macrophages M1 and Eosinophils was stable and effective to predict BLCA patients’ prognosis. Finally, we further validated our model by observing the expression of above genes in tumor and normal tissues. Moreover, we established a nomogram that had a good prediction for the survival of patients with BLCA, which contained age, tumor stage and risk score. A high C-index value and a good calibration curve showed that the nomogram had a good predictive effect.

C5AR2 is a polyhedral modulator that can affect multiple systems and cell types, so it plays a dual role of immune activation and immune suppression [18, 19]. Several studies showed that C5AR2 can promote tumor formation and chemotherapy resistance by providing a living environment for cancer stem cells [20]. In general, C5AR2 is differentially expressed in most cancerous and noncancerous tissues, and high expression of C5AR2 is significantly connected with poor prognosis in many cancers. For example, Zhu et al. showed that overexpression of C5AR2 promoted the migration, invasion and proliferation of breast cancer cells [21]. In our research, high expression of C5AR2 was a risk factor for prognosis and was linked to poor prognosis in BLCA patients.

CD96 participates in a variety of immune responses, controls immune cell infiltration, and affects the malignant properties of various cancers. Thus, in various cancers, especially gliomas and melanomas, CD96 is a potential biomarker to determine patient immune infiltration and prognosis. High CD96 expression is associated with poorer overall and disease-specific survival in low-grade gliomas. But in cutaneous melanoma, the opposite correlation was found [22]. In the present study, overexpression of CD96 connected with good prognosis in BLCA patients.

Several studies showed that mutations of CSF3R are a risk factor of the development of myeloid and lymphoid malignancies [23]. Some studies have also suggested that CSF3R mutations may be effective diagnostic and prognostic markers for chronic neutrophilic leukemia and chronic myeloid leukemia [24, 25]. In our research, high expression of CSF3R contributed to poor outcomes of BLCA patients.

FBXW10 is an independent prognostic risk factor in hepatocellular carcinoma. High expression of FBXW10 is linked to poor survival in male hepatocellular carcinoma patients [26]. Wang et al. suggested that the mean methylation rate of FBXW10 in cancer tissues was significantly higher than in paired normal tissues in clear cell renal cell carcinoma [27]. In our study, high expression of FBXW10 would result in a high risk score with poor prognosis.

FCAR (CD89) mediates multiple immune system functions, including degranulation, endocytosis, phagocytosis, cytokine synthesis, and cytokine release [28]. As a regulator, FCAR plays a dual role of anti-inflammatory and pro-inflammatory in the inflammatory response [29]. Some researchers believed that FCAR was a promising therapeutic target for hematopoietic malignancies [30, 31]. Our study suggested that high expression level of FCAR led to poor prognosis in BLCA patients.

GHR may be implicated in many types of cancer. Studies related to gastric cancer have shown that GHR regulated the G1 cell cycle progression by mediating the PI3K/AKT signaling pathway, thereby regulating the growth and apoptosis of gastric cancer cells [32]. Strous et al. showed that dysregulation of GHR signaling was associated with cancer, and the GHR signaling pathway acted a vital role in growth, metabolism, immunity, cell cycle control, homeostatic processes, and chemoresistance through the JAK/STAT and SRC pathways [33]. Knockdown of GHR significantly stimulated apoptosis in gastric cancer cells, and resulted in arrest of the G1 cell cycle [32]. Our study suggested that GHR might also contribute to tumor development in BLCA.

IL10 is thought to have the ability to suppress antitumor T cell responses in cancer, but several researches have also suggested that IL10 took part in some inherent antitumor T cell responses. It indicates that IL10 may play a dual regulatory role in cancer [34]. In our study, IL10 played a certain antitumor effect in BLCA.

Studies related to chronic non-bacterial osteomyelitis indicated that the frequency of MEFV gene mutations increased in the disease, and the disease phenotype was more severe in patients with MEFV gene mutations [35]. In addition, studies have shown that mutations of MEFV gene which encode the pyrin protein could cause Familial Mediterranean fever [36]. Our study revealed that overexpression of MEFV was a favorable prognostic factor in BLCA patients.

LOX-1 encoded by the OLR1 gene is involved in the pathogenesis of atherosclerosis, and activation of LOX-1 is an important mechanism leading to plaque instability and progression to acute coronary syndrome [37]. Meanwhile, the upregulation of LOX-1 was associated with the occurrence, development and metastasis of various tumors [38]. In the present study, overexpression of OLR1 led to a higher risk score and a poorer prognosis, which was also consistent with the findings above.

At present, there are relatively few studies on PGLYRP3. According to research, PGLYRP3 acted a pivotal part in antibacterial immunity and inflammatory responses [39, 40]. In our research, PGLYRP3 A was highly expressed in BLCA and was associated with poor prognosis.

According to research, RASGRP4 was significantly overxpressed in diffuse large B cell lymphoma. Meanwhile, knockdown of RASGRP4 significantly inhibited tumor formation [41]. Studies on bladder urothelial carcinoma have found that overexpression of RASGRP4 was significantly related to shorter survival of bladder urothelial carcinoma [42]. Our study confirmed this.

S100A12 was proved to be a useful biomarker in inflammatory conditions. And some studies suggest that it might also take part in cardiovascular disease [43]. In cancer, S100A12 also played a regulatory role. For example, the expression of S100A12 was significantly upregulated in human papillary thyroid cancer, and knockdown of S100A12 significantly inhibited propagation, transfer, invasion, and cell cycle progression of cancer cells [44]. This study showed that high expression of S100A12 led to worse prognosis in BLCA patients.

Immunity and autophagy play important roles in tumors. Our study identified twelve genes associated with immunity and autophagy and three Cibersort immune infiltration scores that were significantly associated with bladder cancer prognosis. On this basis, we established a model to predict survival in patients with BLCA. There are some limitations to our study. First, the genes we defined were validated only by immunohistochemistry in the HPA database. Although the immunohistochemical data in the HPA database and the gene expression data in the TCGA are of relatively high quality, the data we used were from urothelial carcinoma and were not 100% representative of bladder cancer. Second, immunohistochemical information of FBXW10, MEFV, OLR1 and RASGRP4 were missing in HPA. The high expression of IL10 was detrimental to prognosis, which was inconsistent with our findings. Besides, the functions of these genes in bladder cancer need to be further explored. For BLCA patients with T1G3 stage, Bacillus Calmette-Guerin (BCG) treatment and response to BCG have important influence on the prognosis of patients. Unfortunately, our study did not have enough data at this point to make a credible statistical analysis, which was one of the limitations of this study. At the same time, genetic mutations may also have a significant impact on the prognosis of patients with bladder cancer. In many tumors, mutations in one or more genes have been shown to be significantly associated with prognosis. Unfortunately, we did not explore the genetic mutations in high-risk and low-risk patients.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Disclaimer:

This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

Click here for Source link (https://www.biomedcentral.com/)