• Abdou, A. M., Hedia, R. H., Omara, S. T., Mahmoud, M. A. E. F., Kandil, M. M., & Bakry, M. A. (2018). Interspecies comparison of probiotics isolated from different animals. Veterinary World, 11(2), 227. https://doi.org/10.14202/vetworld.2018.227-230

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdulrazzaq, A. I., & Abd Khalil, K. (2022). Optimization of skim milk based medium for biomass production of probiotic lactobacillus acidophilus ATCC 4356 using face central composite design-response surface methodology approach. Journal of Asian Scientific Research, 12(1), 1–11. https://doi.org/10.55493/5003.v12i1.4448

  • Abe, F., Ishibashi, N., & Shimamura, S. (1995). Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. Journal of Dairy Science, 78(12), 2838–2846. https://doi.org/10.3168/jds.S0022-0302(95)76914-4

  • Abe, F., Miyauchi, H., Uchijima, A., Yaeshima, T., & Iwatsuki, K. (2009). Effects of storage temperature and water activity on the survival of Bifidobacteria in powder form. International Journal of Dairy Technology, 62(2), 234–239. https://doi.org/10.1111/j.1471-0307.2009.00464.x

  • Aguirre-Ezkauriatza, E. J., Aguilar-Yáñez, J. M., Ramírez-Medrano, A., & Alvarez, M. M. (2010). Production of probiotic biomass (Lactobacillus casei) in goat milk whey: Comparison of batch, continuous and fed-batch cultures. Bioresource Technology, 101(8), 2837–2844. https://doi.org/10.1016/j.biortech.2009.10.047

  • Ailioaie, L. M., & Litscher, G. (2021). Probiotics, photobiomodulation, and disease management: controversies and challenges. International Journal of Molecular Sciences, 22(9), 4942. https://doi.org/10.3390/ijms22094942

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M., & Hassan, F. A. (2013). Prebiotics as functional foods: a review. J Funct Food, 5, 1542–1553. https://doi.org/10.1016/j.jff.2013.08.009

    CAS 
    Article 

    Google Scholar
     

  • Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Khaledabad, M. A. (2019). Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: Optimization of fermentation variables and characterization of structure and bioactivities. International Journal of Biological Macromolecules, 123, 752–765. https://doi.org/10.1016/j.ijbiomac.2018.11.084

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Anvari, M., Khayati, G., & Rostami, S. (2014). Optimisation of medium composition for probiotic biomass production using response surface methodology. Journal of Dairy Research, 81(1), 59–64. https://doi.org/10.1017/S0022029913000733

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bárcena, J. B., Siñeriz, F., González de Llano, D., Rodríguez, A., & Suárez, J. E. (1998). Chemostat production of plantaricin C by Lactobacillus plantarum LL441. Applied and Environmental Microbiology, 64(9), 3512–3514. https://doi.org/10.1128/aem.64.9.3512-3514.1998

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behera, S. S., Ray, R. C., & Zdolec, N. (2018). Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. BioMed Research International, 2018, 9361614. https://doi.org/10.1155/2018/9361614

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bei, L. T., & Chiao, Y. C. (2001). An integrated model for the effects of perceived product, perceived service quality, and perceived price fairness on consumer satisfaction and loyalty. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 14, 125.


    Google Scholar
     

  • Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Biswas, S. R., Ray, P., Johnson, M. C., & Ray, B. (1991). Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Applied and Environmental Microbiology, 57(4), 1265–1267. https://doi.org/10.1128/aem.57.4.1265-1267.1991

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boontun, C., Vatanyoopaisarn, S., Hankla, S., Kuraya, E., & Tamaki, Y. (2020). Modification of media using food-grade components for the fermentation of Bifidobacterium and Lactobacillus strains in large-scale bioreactors. Preparative Biochemistry & Biotechnology, 6, 1–11. https://doi.org/10.1080/10826068.2020.1861009

    CAS 
    Article 

    Google Scholar
     

  • Brinques, G. B., do Carmo Peralba, M., & Ayub, M. A. Z. (2010). Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems. Journal of Industrial Microbiology and Biotechnology, 37(2), 205–212. https://doi.org/10.1007/s10295-009-0665-1

  • Cha, K. H., Lee, E. H., Yoon, H. S., Lee, J. H., Kim, J. Y., Kang, K., & Pan, C. H. (2018). Effects of fermented milk treatment on microbial population and metabolomic outcomes in a three-stage semi-continuous culture system. Food Chemistry, 263, 216–224.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Champagne, C. P., & Gardner, N. J. (2008). Effect of storage in a fruit drink on subsequent survival of probiotic lactobacilli to gastro-intestinal stresses. Food Research International, 41(5), 539–543.

    CAS 
    Article 

    Google Scholar
     

  • Chang, C. P., & Liew, S. L. (2013). Growth Medium Optimization for Biomass Production of a Probiotic Bacterium, L actobacillus rhamnosus ATCC 7469. Journal of Food Biochemistry, 37(5), 536–543. https://doi.org/10.1111/jfbc.12004

    CAS 
    Article 

    Google Scholar
     

  • Chin, T. S., Othman, N. Z., Malek, R. A., Elmarzugi, N., Leng, O., Ramli, S., & El Enshasy, H. (2015). Bioprocess optimization for biomass production of probiotics yeast Saccharomyces boulardii in semi-industrial scale. Journal of Chemical and Pharmaceutical Research, 7(3), 122–132.

  • Choi, G. H., Lee, N. K., & Paik, H. D. (2021). Optimization of medium composition for biomass production of Lactobacillus plantarum 200655 using response surface methodology. Journal of Microbiology and Biotechnology, 31(5), 717–725.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Daliri, E. B. M., Kim, Y., Do, Y., Chelliah, R., & Oh, D. H. (2022). In vitro and in vivo cholesterol reducing ability and safety of probiotic candidates isolated from Korean fermented soya beans. Probiotics and Antimicrobial Proteins, 14(1), 87–98. https://doi.org/10.1007/s12602-021-09798-0

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dang, T. D., Yong, C. C., Rheem, S., & Oh, S. (2021). Optimizing the composition of the medium for the viable cells of Bifidobacterium animalis subsp. lactis JNU306 using response surface methodology. Journal of animal science and technology63(3), 603–613. https://doi.org/10.5187/jast.2021.e43

  • De Vuyst, L., & Leroy, F. (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. Microbial Physiology, 13(4), 194–199.

  • Depoorter, L., & Vandenplas, Y. (2022).Probiotics in pediatrics. Probiotics, 425-450. https://doi.org/10.3390/nu13072176

  • Doleyres, Y., & Lacroix, C. J. I. D. J. (2005). Technologies with free and immobilised cells for probiotic Bifidobacteria production and protection. International Dairy Journal, 15(10), 973–988.

    CAS 
    Article 

    Google Scholar
     

  • Du Toit, E., Vesterlund, S., Gueimonde, M., & Salminen, S. (2013). Assessment of the effect of stress-tolerance acquisition on some basic characteristics of specific probiotics. International Journal of Food Microbiology, 165(1), 51–56.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • EFSA Panel on Biological Hazards (BIOHAZ), Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., & Fernández Escámez, P. S. (2017). Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA Journal, 15(3), e04664. https://doi.org/10.2903/j.efsa.2017.4664

    CAS 
    Article 

    Google Scholar
     

  • Elizabeth Sloan, A. Top 10 Functional Food Trends. Food technology magazine.issue 2022, published on April 1, 2022. https://www.ift.org/news-and-publications/food-technology

  • Elmarzugi, N., El Enshasy, H., Abd Malek, R., Othman, Z., Sarmidi, M. R., & Aziz, R. (2010). Optimization of cell mass production of the probiotic strain Lactococcus lactis in batch and fed-bach culture in pilot scale levels. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Technology, 2, 873–879.


    Google Scholar
     

  • Eyahmalay, J., Elsayed, E. A., Dailin, D. J., Ramli, S., Sayyed, R. Z., & El-Enshasy, H. A. (2020). Statistical optimization approaches for high cell biomass production of Lactobacillus casei. Journal of Scientific & Industrial Research, 79, 216–221.

    CAS 

    Google Scholar
     

  • FAO Joint. (2007). WHO working group on drafting guidelines for the evaluation of probiotics in food. Guidelines for the evaluation of probiotics in food: report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, ON, Canada, April 30 and May 1, 2002. http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

  • Fayol-Messaoudi, D., Berger, C. N., Coconnier-Polter, M. H., Lievin-Le Moal, V., & Servin, A. L. (2005). pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium. Applied and Environmental Microbiology, 71(10), 6008–6013.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fenster, K., Freeburg, B., Hollard, C., Wong, C., Rønhave Laursen, R., & Ouwehand, A. C. (2019). The production and delivery of probiotics: a review of a practical approach. Microorganisms, 7(3), 83. https://doi.org/10.3390/microorganisms7030083

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Fochesato, A. S., Galvagno, M. A., Dogi, C. A., Cerrutti, P., Gonzalez Pereyra, M. L., Flores, M. D., & Cavaglieri, L. R. (2018). Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology. Adv Biotech & Micro, 8(1), 555727.


    Google Scholar
     

  • Foligné, B., Daniel, C., & Pot, B. (2013). Probiotics from research to market: The possibilities, risks and challenges. Current Opinion in Microbiology, 16(3), 284–292.

    PubMed 
    Article 

    Google Scholar
     

  • Gismondo, M. R., Drago, L., & Lombardi, A. (1999). Review of probiotics available to modify gastrointestinal flora. International Journal of Antimicrobial Agents, 12(4), 287–292.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Granato, D., Branco, G. F., Cruz, A. G., Faria, J. D. A. F., & Shah, N. P. (2010). Probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, 9(5), 455–470.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hsieh, S. C., Liu, J. M., Pua, X. H., Ting, Y., Hsu, R. J., & Cheng, K. C. (2016). Optimization of Lactobacillus acidophilus cultivation using taro waste and evaluation of its biological activity. Applied Microbiology and Biotechnology, 100(6), 2629–2639.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, S., Cauty, C., Dolivet, A., Le Loir, Y., Chen, X. D., Schuck, P., & Jeantet, R. (2016). Double use of highly concentrated sweet whey to improve the biomass production and viability of spray-dried probiotic bacteria. Journal of Functional Foods, 23, 453–463.

    CAS 
    Article 

    Google Scholar
     

  • Hwang, C. F., Chen, J. N., Huang, Y. T., & Mao, Z. Y. (2011). Biomass production of Lactobacillus plantarum LP02 isolated from infant feces with potential cholesterol lowering ability. African Journal of Biotechnology, 10(36), 7010–7020.

    CAS 

    Google Scholar
     

  • Hwang, C. F., Chang, J. H., Houng, J. Y., Tsai, C. C., Lin, C. K., & Tsen, H. Y. (2012). Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the Box-Behnken method. Biotechnology and Bioprocess Engineering, 17(4), 827–834.

    CAS 
    Article 

    Google Scholar
     

  • Jangra, M., Belur, P. D., Oriabinska, L. B., & Dugan, O. M. (2016). Multistrain probiotic production by co-culture fermentation in a lab-scale bioreactor. Engineering in Life Sciences, 16(3), 247–253.

    CAS 
    Article 

    Google Scholar
     

  • Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E., & Mercenier, A. (2010). Application of probiotics in food products—challenges and new approaches. Current Opinion in Biotechnology, 21(2), 175–181.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kamal, R. M., Alnakip, M. E., Abd El Aal, S. F., & Bayoumi, M. A. (2018). Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt. International Dairy Journal, 85, 1–7.

    Article 

    Google Scholar
     

  • Kantachote, D., Ratanaburee, A., Hayisama-ae, W., Sukhoom, A., & Nunkaew, T. (2017). The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. Journal of Functional Foods, 32, 401–408.

    CAS 
    Article 

    Google Scholar
     

  • Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN Nutrition, 2013, 481651. https://doi.org/10.5402/2013/481651

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolacek, S., Hojsak, I., Canani, R. B., Guarino, A., Indrio, F., Pot, B., & Weizman, Z. (2017). Commercial probiotic products: a call for improved quality control. A position paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of pediatric gastroenterology and nutrition65(1), 117–124.

  • Kuehbacher, T., Ott, S. J., Helwig, U., Mimura, T., Rizzello, F., Kleessen, B., & Schreiber, S. (2006). Bacterial and fungal microbiota in relation to probiotic therapy (VSL# 3) in pouchitis. Gut, 55(6), 833–841. https://doi.org/10.1136/gut.2005.078303

    CAS 
    Article 

    Google Scholar
     

  • Kuo, H. C., Kwong, H. K., Chen, H. Y., Hsu, H. Y., Yu, S. H., Hsieh, C. W., & Cheng, K. C. (2021). Enhanced antioxidant activity of Chenopodium formosanum Koidz. by lactic acid bacteria: Optimization of fermentation conditions. PloS one16(5), e0249250.

  • LeBlanc, J. G., Milani, C., De Giori, G. S., Sesma, F., Van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology, 24(2), 160–168.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lechiancole, T., Ricciardi, A., & Parente, E. (2002). Optimization of media and fermentation conditions for the growth of Lactobacillus sakei. Annals of Microbiology, 52(3), 257–274.


    Google Scholar
     

  • Leroy, F., De Winter, T., Adriany, T., Neysens, P., & De Vuyst, L. (2006). Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. International Journal of Food Microbiology, 112(2), 102–111.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, X., Wang, Q., Hu, X., & Liu, W. (2022). Current status of probiotics as supplements in the prevention and treatment of infectious diseases. Frontiers in Cellular and Infection Microbiology, 12, 789063. https://doi.org/10.3389/fcimb.2022.789063

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Y., Liu, M., Pu, J., Zhu, Z., Gao, Z., Zhou, Q., & Li, P. (2021). Probiotics and their metabolites ameliorate inflammatory bowel disease: a critical review. Infectious Microbes & Diseases, 3(1), 4–13.

    CAS 
    Article 

    Google Scholar
     

  • Makowski, K., Matusiak, K., Borowski, S., Bielnicki, J., Tarazewicz, A., Maroszyńska, M., & Gutarowska, B. (2017). Optimization of a culture medium using the Taguchi approach for the production of microorganisms active in odorous compound removal. Applied Sciences, 7(8), 756.

    Article 
    CAS 

    Google Scholar
     

  • Malvido, M. C., González, E. A., Bazán Tantaleán, D. L., Bendaña Jácome, R. J., & Guerra, N. P. (2019). Batch and fed-batch production of probiotic biomass and nisin in nutrient-supplemented whey media. Brazilian Journal of Microbiology, 50(4), 915–925.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Manzoor, A., Qazi, J. I., ul Haq, I., Mukhtar, H., & Rasool, A. (2017). Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low-cost media cultivation strategy. Journal of Biological Engineering, 11(1), 1–10.

    Article 
    CAS 

    Google Scholar
     

  • Marchwińska, K., & Gwiazdowska, D. (2022). Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. Archives of Microbiology, 204(1), 1–21.

    Article 
    CAS 

    Google Scholar
     

  • Marco, M. L., Sanders, M. E., Gänzle, M., Arrieta, M. C., Cotter, P. D., De Vuyst, L., & Hutkins, R. (2021). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology & Hepatology, 18(3), 196–208.

    Article 

    Google Scholar
     

  • Marova, I., Carnecka, M., Halienova, A., Certik, M., Dvorakova, T., & Haronikova, A. (2012). Use of several waste substrates for carotenoid-rich yeast biomass production. Journal of Environmental Management, 95, S338–S342.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15–25.

    Article 
    CAS 

    Google Scholar
     

  • Mills, J. P., Rao, K., & Young, V. B. (2018). Probiotics for Prevention of Clostridium difficile Infection. Current Opinion in Gastroenterology, 34(1), 3–10. https://doi.org/10.1097/mog.0000000000000410

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milner, E., Stevens, B., An, M., Lam, V., Ainsworth, M., Dihle, P., … & Segars, K. (2021). Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Frontiers in Microbiology, 12, 689958. https://doi.org/10.3389/fmicb.2021.689958

  • Mishra, S. S., Behera, P. K., Kar, B., & Ray, R. C. (2018). Advances in probiotics, prebiotics and nutraceuticals. In Innovations in technologies for fermented food and beverage industries (pp. 121–141). Springer, Cham.

  • Muller, J. A., Stanton, C., Sybesma, W., Fitzgerald, G. F., & Ross, R. P. (2010). Reconstitution conditions for dried probiotic powders represent a critical step in determining cell viability. Journal of Applied Microbiology, 108(4), 1369–1379.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nader-Macías, M. E. F., De Gregorio, P. R., & Silva, J. A. (2021). Probiotic lactobacilli in formulas and hygiene products for the health of the urogenital tract. Pharmacology Research & Perspectives, 9(5), e00787.

    Article 
    CAS 

    Google Scholar
     

  • Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M., & Saris, P. E. (2022). Antifungal preservation of food by lactic acid bacteria. Foods, 11(3), 395. https://doi.org/10.3390/foods11030395

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neidhardt, F. C., Bloch, P. L., & Smith, D. F. (1974). Culture medium for enterobacteria. Journal of Bacteriology, 119(3), 736–747.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Obafemi, Y. D., Oranusi, S. U., Ajanaku, K. O., Akinduti, P. A., Leech, J., & Cotter, P. D. (2022). African fermented foods: overview, emerging benefits, and novel approaches to microbiome profiling. Npj Science of Food, 6(1), 1–9.

    Article 

    Google Scholar
     

  • Othman, M., Ariff, A. B., Wasoh, H., Kapri, M. R., & Halim, M. (2017). Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition. AMB Express, 7(1), 1–14.

    CAS 
    Article 

    Google Scholar
     

  • Palanivelu, J., Thanigaivel, S., Vickram, S., Dey, N., Mihaylova, D., & Desseva, I. (2022). Probiotics in functional foods: survival assessment and approaches for improved viability. Applied Sciences, 12(1), 455.

    CAS 
    Article 

    Google Scholar
     

  • Pandey, K. R. (2016). Development of bioprocess for high density cultivation yield the probiotic Bacillus coagulans and its spores. Journal of BioScience and Biotechnology, 5(2), 173–181.


    Google Scholar
     

  • Pereira, A. L. F., & Rodrigues, S. (2018). Turning fruit juice into probiotic beverages. In Fruit juices (pp. 279–287). Academic Press.

  • Plessas, S. (2021). Advancements in the use of fermented fruit juices by lactic acid bacteria as functional foods: prospects and challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum application. Fermentation, 8(1), 6. https://doi.org/10.3390/fermentation8010006

    CAS 
    Article 

    Google Scholar
     

  • Pohjanheimo, T., & Sandell, M. (2009). Explaining the liking for drinking yoghurt: the role of sensory quality, food choice motives, health concern and product information. International Dairy Journal, 19(8), 459–466.

    Article 

    Google Scholar
     

  • Polak-Berecka, M., Waśko, A. D. A. M., Kordowska-Wiater, M., Podleśny, M. A. R. C. I. N., Targoński, Z., & Kubik-Komar, A. (2010). Optimization of medium composition for enhancing growth of Lactobacillus rhamnosus PEN using response surface methodology. Polish Journal of Microbiology, 59(2), 113–118.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prantera, C. (2006). Probiotics for Crohn’s disease: What have we learned? Gut, 55(6), 757–759.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Puntillo, M., Segli, F., Champagne, C. P., Raymond, Y., & Vinderola, G. (2022). Functional Microbes and Their Incorporation into Foods and Food Supplements: Probiotics and Postbiotics. Annual Review of Food Science and Technology, 13, 385–407. https://doi.org/10.1146/annurev-food-052720-011545

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ranjha, M. M. A. N., Shafique, B., Batool, M., Kowalczewski, P. Ł, Shehzad, Q., Usman, M., & Aadil, R. M. (2021). Nutritional and health potential of probiotics: a review. Applied Sciences, 11(23), 11204. https://doi.org/10.3390/app112311204

    CAS 
    Article 

    Google Scholar
     

  • Ridwan, R., Widyastuti, Y., Sari, N. F., Fidryanto, R., & Astuti, W. D. (2021, June). Optimization of medium composition for probiotic powder inoculum using the response surface methodology. In IOP Conference Series: Earth and Environmental Science (Vol. 788, No. 1, p. 012038). IOP Publishing.

  • Santivarangkna, C., Kulozik, U., & Foerst, P. (2007). Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnology Progress, 23(2), 302–315.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sen, R., & Babu, K. S. (2005). Modeling and optimization of the process conditions for biomass production and sporulation of a probiotic culture. Process Biochemistry, 40(7), 2531–2538.

    CAS 
    Article 

    Google Scholar
     

  • Shahravy, A., Tabandeh, F., Bambai, B., Zamanizadeh, H. R., & Mizani, M. (2012). Optimization of probiotic Lactobacillus casei ATCC 334 production using date powder as carbon source. Chemical Industry and Chemical Engineering Quarterly/CICEQ, 18(2), 273–282.

    CAS 
    Article 

    Google Scholar
     

  • Singh, V. P., Sharma, J., Babu, S., Rizwanulla, S. A., & Singla, A. (2013). Role of probiotics in health and disease: a review. Journal of Pakistan Medical Association, 63(2), 253–257.


    Google Scholar
     

  • Singhi, S. C., & Kumar, S. (2016). Probiotics in critically ill children. F1000Research5. https://doi.org/10.12688/f1000research.7630.1

  • Śliżewska, K., & Chlebicz-Wójcik, A. (2020). Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology, 9(12), 423.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Song, D., Ibrahim, S., & Hayek, S. (2012). Recent application of probiotics in food and agricultural science. Probiotics, 10, 1–34. https://doi.org/10.5772/50121

    CAS 
    Article 

    Google Scholar
     

  • Srednicka, P., Juszczuk-Kubiak, E., Wójcicki, M., Akimowicz, M., & Roszko, M. Ł. (2021). Probiotics as a biological detoxification tool of food chemical contamination: a review. Food Chem Toxicol, 153, 112306.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stamenković-Stojanović, S., Karabegović, I., Beškoski, V., Nikolić, N., & Lazić, M. (2020). Bacillus subtilis NCIM2063 batch cultivation: the influence of the substrate concentration and oxygen transfer rate on the biomass yield. Advanced Technologies, 9(1), 44–49.

    Article 

    Google Scholar
     

  • Stephenie, W., Kabeir, B. M., Shuhaimi, M., Rosfarizan, M., & Yazid, A. M. (2007). Growth optimization of a probiotic candidate, Bifidobacterium pseudocatenulatum G4, in milk medium using response surface methodology. Biotechnology and Bioprocess Engineering, 12(2), 106–113.

    CAS 
    Article 

    Google Scholar
     

  • Tarique, M., Abdalla, A., Masad, R., Al-Sbiei, A., Kizhakkayil, J., Osaili, T., & Ayyash, M. (2022). Potential probiotics and postbiotic characteristics including immunomodulatory effects of lactic acid bacteria isolated from traditional yogurt-like products. LWT, 159, 113207. https://doi.org/10.1016/j.lwt.2022.113207

    CAS 
    Article 

    Google Scholar
     

  • Terpou, A., Gialleli, A. I., Bekatorou, A., Dimitrellou, D., Ganatsios, V., Barouni, E., & Kanellaki, M. (2017). Sour milk production by wheat bran supported probiotic biocatalyst as starter culture. Food and Bioproducts Processing, 101, 184–192. https://doi.org/10.1016/j.fbp.2016.11.007

  • Vaningelgem, F., Zamfir, M., Adriany, T., & De Vuyst, L. (2004). Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium. Journal of Applied Microbiology, 97(6), 1257–1273.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verna, E. C., & Lucak, S. (2010). Use of probiotics in gastrointestinal disorders: what to recommend? Therapeutic Advances in Gastroenterology, 3(5), 307–319.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, T., Lu, Y., Yan, H., Li, X., Wang, X., Shan, Y., & Lü, X. (2020). Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS-8. Bioprocess and Biosystems Engineering, 43(3), 515–528. https://doi.org/10.1007/s00449-019-02246-y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wilcox, C. R., Stuart, B., Leaver, H., Lown, M., Willcox, M., Moore, M., et al. (2019). Effectiveness of the Probiotic Streptococcus salivarius K12 for the Treatment and/or Prevention of Sore Throat: A Systematic Review. Clin. Microbiol. Infect.: Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 25 (6), 673–680. https://doi.org/10.1016/j.cmi.2018.12.031

  • Xie, H. Y., Feng, D., Wei, D. M., Mei, L., Chen, H., Wang, X., & Fang, F. (2017). Probiotics for vulvovaginal candidiasis in non‐pregnant women. Cochrane Database of Systematic Reviews, (11). https://doi.org/10.1002/14651858.CD010496

  • Yuste, A., Arosemena, E. L., & Calvo, M. (2021). Study of the probiotic potential and evaluation of the survival rate of Lactiplantibacillus plantarum lyophilized as a function of cryoprotectant. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-98723-0

    CAS 
    Article 

    Google Scholar
     

  • Zermiani, A. P. D. R. B., de Paula, A. L. P. P., Miguel, E. R. A., Lopes, L. D. G., Santana, N. D. C. S., da Silva Santos, T., & Teixeira, J. J. (2021). Evidence of Lactobacillus reuteri to reduce colic in breastfed babies: Systematic review and meta-analysis. Complementary Therapies in Medicine, 63, 102781. https://doi.org/10.1016/j.ctim.2021.102781

    Article 

    Google Scholar
     

  • Zhou, S., Chan, S. Y., Goh, B. C., Chan, E., Duan, W., Huang, M., & McLeod, H. L. (2005). Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clinical Pharmacokinetics, 44(3), 279–304

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)