• Akmaev R (2011) Whole atmosphere modeling: connecting terrestrial and space weather. Rev Geophys. https://doi.org/10.1029/2011RG000364

    Article 

    Google Scholar
     

  • Astafyeva E, Zakharenkova I, Förster M (2015) Ionospheric response to the 2015 St. Patrick’s day storm: a global multi-instrumental overview. J Geophys Res Space Phys 120(10):9023–9037. https://doi.org/10.1002/2015JA021629

    Article 

    Google Scholar
     

  • Borries C, Mahrous AM, Ellahouny NM, Badeke R (2016) Multiple ionospheric perturbations during the Saint Patrick’s Day storm 2015 in the European-African sector. J Geophys Res Space Phys 121(11):11333–11345. https://doi.org/10.1002/2016JA023178

    Article 

    Google Scholar
     

  • Buonsanto MJ (1999) Ionospheric storms: a review. Space Sci Rev 88(3):563–601. https://doi.org/10.1023/A:1005107532631

    Article 

    Google Scholar
     

  • Cantrall CE, Matsuo T, Solomon SC (2019) Upper atmosphere radiance data assimilation: a feasibility study for GOLD far ultraviolet observations. J Geophys Res Space Phys 124(10):8154–8164. https://doi.org/10.1029/2019ja026910

    Article 

    Google Scholar
     

  • Carrassi A, Bocquet M, Bertino L, Evensen G (2018) Data assimilation in the geosciences: an overview of methods, issues, and perspectives. Wiley Interdiscip Rev Clim Change 9(5):e535. https://doi.org/10.1002/wcc.535

    Article 

    Google Scholar
     

  • Chartier AT, Jackson DR, Mitchell CN (2013) A comparison of the effects of initializing different thermosphere-ionosphere model fields on storm time plasma density forecasts. J Geophys Res Space Phys 118(11):7329–7337. https://doi.org/10.1002/2013JA019034

    Article 

    Google Scholar
     

  • Chartier AT, Matsuo T, Anderson JL, Collins N, Hoar TJ, Lu G, Mitchell CN, Coster AJ, Paxton LJ, Bust GS (2016) Ionospheric data assimilation and forecasting during storms. J Geophys Res Space Phys 121(1):764–778. https://doi.org/10.1002/2014JA020799

    Article 

    Google Scholar
     

  • Chen C, Lin C, Matsuo T, Chen W (2016a) Ionosphere data assimilation modeling of 2015 St. Patrick’s Day geomagnetic storm. J Geophys Res Space Phys 121(11):11–549. https://doi.org/10.1002/2015JA021787

    Article 

    Google Scholar
     

  • Chen C, Lin C, Matsuo T, Chen W, Lee I, Liu J, Lin J, Hsu C (2016b) Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions. J Geophys Res Space Phys 121(6):5708–5722. https://doi.org/10.1002/2015JA021787

    Article 

    Google Scholar
     

  • Codrescu S, Codrescu M, Fedrizzi M (2018) An ensemble Kalman filter for the thermosphere-ionosphere. Space Weather 16(1):57–68. https://doi.org/10.1002/2017SW001752

    Article 

    Google Scholar
     

  • Deng Y, Richmond AD, Ridley AJ, Liu HL (2008) Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophys Res Lett. https://doi.org/10.1029/2007GL032182

    Article 

    Google Scholar
     

  • Emmert J (2015) Thermospheric mass density: a review. Adv Space Res 56(5):773–824. https://doi.org/10.1016/j.asr.2015.05.038

    Article 

    Google Scholar
     

  • Erdogan E, Schmidt M, Goss A, Görres B, Seitz F (2020) Adaptive modeling of the global ionosphere vertical total electron content. Remote Sens 12(11):1822. https://doi.org/10.3390/rs12111822

    Article 

    Google Scholar
     

  • Fernandez-Gomez I, Fedrizzi M, Codrescu MV, Borries C, Fillion M, Fuller-Rowell TJ (2019) On the difference between real-time and research simulations with CTIPe. Adv Space Res 64(10):2077–2087. https://doi.org/10.1016/j.asr.2019.02.028

    Article 

    Google Scholar
     

  • Forootan E, Farzaneh S, Kosary M, Schmidt M, Schumacher M (2021) A simultaneous calibration and data assimilation (C/DA) to improve NRLMSISE00 using thermospheric neutral density (TND) from space-borne accelerometer measurements. Geophys J Int 224(2):1096–1115. https://doi.org/10.1093/gji/ggaa507

    Article 

    Google Scholar
     

  • Forootan E, Kosary M, Farzaneh S, Kodikara T, Vielberg K, Fernandez-Gomez I, Borries C, Schumacher M (2022) Forecasting global and multi-level thermospheric neutral density and ionospheric electron content by tuning models against satellite-based accelerometer measurements. Sci Rep 12(1):1–19

    Article 

    Google Scholar
     

  • Förster M, Jakowski N (2000) Geomagnetic storm effects on the topside ionosphere and plasmasphere: a compact tutorial and new results. Surv Geophys 21(1):47–87. https://doi.org/10.1023/A:1006775125220

    Article 

    Google Scholar
     

  • Fuller-Rowell T (1995) The dynamics of the lower thermosphere. Up Mesos Low Thermosphere Rev Exper Theory Geophys Monogr Ser 87:23–36. https://doi.org/10.1029/GM087p0023

    Article 

    Google Scholar
     

  • Fuller-Rowell T, Evans D (1987) Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. J Geophys Res Space Phys 92(A7):7606–7618. https://doi.org/10.1029/JA092iA07p07606

    Article 

    Google Scholar
     

  • Fuller-Rowell T, Rees D, Quegan S, Moffett R, Codrescu M, Millward G (1996) A coupled thermosphere-ionosphere model (CTIM). STEP report 239

  • Fuller-Rowell T, Minter C, Codrescu M (2004) Data assimilation for neutral thermospheric species during geomagnetic storms. Radio Sci. https://doi.org/10.1029/2002RS002835

    Article 

    Google Scholar
     

  • Gonzalez W, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani B, Vasyliunas V (1994) What is a geomagnetic storm? J Geophys Res Space Phys 99(A4):5771–5792. https://doi.org/10.1029/93JA02867

    Article 

    Google Scholar
     

  • Goss A, Schmidt M, Erdogan E, Görres B, Seitz F (2019) High-resolution vertical total electron content maps based on multi-scale B-spline representations. Ann Geophys. https://doi.org/10.5194/angeo-37-699-2019

    Article 

    Google Scholar
     

  • He J, Yue X, Wang W, Wan W (2019) EnKF Ionosphere and Thermosphere data assimilation algorithm through a sparse matrix method. J Geophys Res Space Phys 124(8):7356–7365. https://doi.org/10.1029/2019ja026554

    Article 

    Google Scholar
     

  • He J, Yue X, Ren Z (2021) The impact of assimilating Ionosphere and Thermosphere observations on neutral temperature improvement: observing system simulation experiments using EnKF. Space Weather. https://doi.org/10.1029/2021sw002844

    Article 

    Google Scholar
     

  • Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16):1237–1247. https://doi.org/10.1016/S1364-6826(99)00054-1

    Article 

    Google Scholar
     

  • Hsu CT, Pedatella NM (2021) Assessing the impact of ICON/MIGHTI Zonal and Meridional winds on upper atmosphere weather specification in a whole atmosphere data assimilation system: an observing system simulation experiment. J Geophys Res Space Phys. https://doi.org/10.1029/2021ja029275

    Article 

    Google Scholar
     

  • Hsu CT, Pedatella NM, Anderson JL (2021) Impact of Thermospheric wind data assimilation on ionospheric electrodynamics using a coupled whole atmosphere data assimilation system. J Geophys Res Space Phys. https://doi.org/10.1029/2021ja029656

    Article 

    Google Scholar
     

  • Huba JD, Schunk RW, Khazanov GV (2014) Modeling the ionosphere-thermosphere, vol 201. Wiley, Hoboken

    Book 

    Google Scholar
     

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic En 82(1):35–45. https://doi.org/10.1115/1.3662552

    Article 

    Google Scholar
     

  • Kamide Y, Kusano K (2015) No major solar flares but the largest geomagnetic storm in the present solar cycle. Space Weather 13(6):365–367. https://doi.org/10.1002/2015SW001213

    Article 

    Google Scholar
     

  • Kodikara T, Zhang K, Pedatella NM, Borries C (2021) The impact of solar activity on forecasting the upper atmosphere via assimilation of electron density data. Space Weather 19(5):e2020SW002,660,. https://doi.org/10.1029/2020SW002660

    Article 

    Google Scholar
     

  • Kunches J, Viereck R (2012) NOAA improves space weather watch products. Space Weather. https://doi.org/10.1029/2012SW000838

    Article 

    Google Scholar
     

  • Laskar FI, Pedatella NM, Codrescu MV, Eastes RW, Evans JS, Burns AG, McClintock W (2021) Impact of GOLD retrieved Thermospheric temperatures on a whole atmosphere data assimilation model. J Geophys Res Space Phys. https://doi.org/10.1029/2020ja028646

    Article 

    Google Scholar
     

  • Liang W (2017) A regional physics-motivated electron density model of the ionosphere. PhD thesis, Technische Universität München

  • Limberger M, Liang W, Schmidt M, Dettmering D, Hugentobler U (2013) Regional representation of F2 Chapman parameters based on electron density profiles. Ann Geophys 31:2215–2227. https://doi.org/10.5194/angeo-31-2215-2013

    Article 

    Google Scholar
     

  • Lomidze L, Knudsen DJ, Burchill J, Kouznetsov A, Buchert SC (2018) Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci 53(1):15–36. https://doi.org/10.1002/2017RS006415

    Article 

    Google Scholar
     

  • Matsuo T, Fedrizzi M, Fuller-Rowell TJ, Codrescu MV (2012) Data assimilation of thermospheric mass density. Space Weather. https://doi.org/10.1029/2012sw000773

    Article 

    Google Scholar
     

  • Millward G, Moffett R, Quegan S, Fuller-Rowell T (1996) A coupled thermosphere-ionosphere-plasmasphere model (CTIP). In: Schunk RW (ed) STEP handbook on ionospheric models. Utah university, Salt lake city, pp 239–279


    Google Scholar
     

  • Nava B, Rodriguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A, Migoya-Orue Y, Radicella S, Amory-Mazaudier C, Fleury R (2016) Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J Geophys Res Space Phys 121(4):3421–3438. https://doi.org/10.1002/2015JA022299

    Article 

    Google Scholar
     

  • Pedatella N, Lu G, Richmond A (2018) Effects of high-latitude forcing uncertainty on the low-latitude and midlatitude ionosphere. J Geophys Res Space Phys 123(1):862–882. https://doi.org/10.1002/2017JA024683

    Article 

    Google Scholar
     

  • Pedatella NM, Anderson JL, Chen CH, Raeder K, Liu J, Liu HL, Lin CH (2020) Assimilation of Ionosphere observations in the whole atmosphere community climate model with Thermosphere-Ionosphere EXtension (WACCMX). J Geophys Res Space Phys. https://doi.org/10.1029/2020ja028251

    Article 

    Google Scholar
     

  • Picone J, Hedin A, Drob DP, Aikin A (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res Space Phys 107(A12):SIA–15. https://doi.org/10.1029/2002JA009430

    Article 

    Google Scholar
     

  • Ren D, Lei J (2020) Evaluation of physics-based data assimilation system driven by neutral density data from a single satellite. Space Weather. https://doi.org/10.1029/2020sw002504

    Article 

    Google Scholar
     

  • Richmond A, Roble R (1997) Electrodynamic coupling effects in the thermosphere/ionosphere system. Adv Space Res 20(6):1115–1124. https://doi.org/10.1016/S0273-1177(97)00754-0

    Article 

    Google Scholar
     

  • Scherliess L, Schunk RW, Sojka JJ, Thompson DC (2004) Development of a physics-based reduced state Kalman filter for the ionosphere. Radio Sci. https://doi.org/10.1029/2002RS002797

    Article 

    Google Scholar
     

  • Siemes C, Da Encarnação JDT, Doornbos E, Van Den Ijssel J, Kraus J, Pereštỳ R, Grunwaldt L, Apelbaum G, Flury J, Olsen PEH (2016) Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities. Earth Planets Space 68(1):1–16. https://doi.org/10.1186/s40623-016-0474-5

    Article 

    Google Scholar
     

  • Solomentsev D, Jacobsen KS, Khattatov B, Khattatov V, Cherniak Y, Titov A (2014) Ionosphere data assimilation capabilities for representing the high-latitude geomagnetic storm event in September 2011. J Geophys Res Space Phys. https://doi.org/10.1002/2014ja020248

    Article 

    Google Scholar
     

  • Sutton EK (2018) A new method of physics-based data assimilation for the quiet and disturbed thermosphere. Space Weather 16(6):736–753. https://doi.org/10.1002/2017sw001785

    Article 

    Google Scholar
     

  • Visser P, Doornbos E, van den IJssel J, Teixeira da Encarnação J, (2013) Thermospheric density and wind retrieval from Swarm observations. Earth Planets Space 65(11):1319–1331. https://doi.org/10.5047/eps.2013.08.003

    Article 

    Google Scholar
     

  • Weimer D (2005) Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J Geophys Res Space Phys. https://doi.org/10.1029/2004JA010884

    Article 

    Google Scholar
     

  • Wu CC, Liou K, Lepping RP, Hutting L, Plunkett S, Howard RA, Socker D (2016) The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)’’. Earth Planets Space 68(1):1–12. https://doi.org/10.1186/s40623-016-0525-y

    Article 

    Google Scholar
     

  • Xiong C, Lühr H, Stolle C (2021) GRACE Electron Density derived from the K-Band Ranging System. Potsdam : GFZ Data Services 0101. https://doi.org/10.5880/GFZ.2.3.2021.003

  • Zhang Y, Wu X, Hu X (2018) Effects of estimating the ionospheric and thermospheric parameters on electron density forecasts. Sci China Earth Sci 61(12):1875–1887. https://doi.org/10.1007/s11430-017-9251-4

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)