• Damar İH, Eroz R (2020) The association of hereditary prothrombotic risk factors with ST-elevation myocardial infarction. Medeniyet Med J 35(4):295. https://doi.org/10.5222/MMJ.2020.67366

    Article 

    Google Scholar
     

  • Shen G-Q, Li L, Rao S, Abdullah KG, Ban JM, Lee B-S et al (2008) Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease. Arterioscler Thromb Vasc Biol 28(2):360–365. https://doi.org/10.1161/ATVBAHA.107.157248

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Huang DL, Chen QF, Wang W, Huang Z, Li T, Li J et al (2018) Association of rs1333040 SNPs with susceptibility, risk factors, and clinical characteristics of acute myocardial infarction patients in a Chinese Han population. Int J Clin Exp Pathol 11(2):727–738

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson PW (1994) Established risk factors and coronary artery disease: the Framingham Study. Am J Hypertens 7(7Pt2):7S-12S. https://doi.org/10.1093/ajh/7.7.7S

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Amara A, Mrad M, Sayeh A, Haggui A, Lahideb D, Fekih-Mrissa N et al (2018) Association of FV G1691A polymorphism but not A4070G with coronary artery disease. Clin Appl Thromb Hemost 24(2):330–337

    CAS 
    Article 

    Google Scholar
     

  • Li M-N, Wang H-J, Zhang N-R, Xuan L, Shi X-J, Zhou T et al (2017) MTHFR C677T gene polymorphism and the severity of coronary lesions in acute coronary syndrome. Medicine. https://doi.org/10.1097/MD.0000000000009044

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balogh L, Katona É, Mezei ZA, Kállai J, Gindele R, Édes I et al (2018) Effect of factor XIII levels and polymorphisms on the risk of myocardial infarction in young patients. Mol Cell Biochem 448(1):199–209. https://doi.org/10.1007/s11010-018-3326-8

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • They-They TP, Hamzi K, Moutawafik MT, Bellayou H, El Messal M, Nadifi S (2010) Prevalence of angiotensin-converting enzyme, methylenetetrahydrofolate reductase, Factor V Leiden, prothrombin and apolipoprotein E gene polymorphisms in Morocco. Ann Hum Biol 37(6):767–777. https://doi.org/10.3109/03014461003738850

    Article 
    PubMed 

    Google Scholar
     

  • Asghar M, Kabita S, Kalla L, Murry B, Saraswathy KN (2013) Prevalence of MTHFR, Factor V, ACE and APOE gene polymorphisms among Muslims of Manipur, India. Ann Hum Biol 40(1):83–87. https://doi.org/10.3109/03014460.2012.737832

    Article 
    PubMed 

    Google Scholar
     

  • Kohler H, Ariëns R, Whitaker P, Grant P (1998) A common coding polymorphism in the FXIII A-subunit gene (FXIIIVal34Leu) affects cross-linking activity. Thromb Haemost 80(10):704–704

    CAS 
    PubMed 

    Google Scholar
     

  • Shafey M, Anderson JL, Scarvelis D, Doucette SP, Gagnon F, Wells PS (2007) Factor XIII Val34Leu variant and the risk of myocardial infarction. Thrombosis Haemostasis 97(04):635–641. https://doi.org/10.1160/TH06-09-0517

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liew S-C, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10. https://doi.org/10.1016/j.ejmg.2014.10.004

    Article 
    PubMed 

    Google Scholar
     

  • Xuan C, Bai X-Y, Gao G, Yang Q, He G-W (2011) Association between polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T and risk of myocardial infarction: a meta-analysis for 8,140 cases and 10,522 controls. Arch Med Res 42(8):677–685. https://doi.org/10.1016/j.arcmed.2011.11.009

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Antman E, Bassand J-P, Klein W, Ohman M, Lopez Sendon JL, Rydén L et al (2000) Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction: the Joint European Society of Cardiology/American College of Cardiology Committee. J Am Coll Cardiol 36(3):959–969

    Article 

    Google Scholar
     

  • Collins A, Ke X (2012) Primer1: primer design web service for tetra-primer ARMS-PCR. Open Bioinform J. https://doi.org/10.2174/1875036201206010055

    Article 

    Google Scholar
     

  • Msalati A, Bashein A, Ghrew M, Khalil I, Sedaa K, Ali A et al (2021) Association of venous thromboembolism and myocardial infarction with Factor V Leiden and Factor II gene mutations among Libyan patients. Libyan J Med 16(1):1857525. https://doi.org/10.1186/s40246-019-0243-1

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cushman M, Rosendaal FR, Psaty BM, Cook EF, Valliere J, Kuller LH et al (1998) Factor V Leiden is not a risk factor for arterial vascular disease in the elderly: results from the Cardiovascular Health Study. Thromb Haemost 79(05):912–915

    CAS 
    Article 

    Google Scholar
     

  • Juul K, Tybjærg-Hansen A, Steffensen R, Kofoed S, Jensen G, Nordestgaad BG (2002) Factor V Leiden: the copenhagen city heart study and 2 meta-analyses. Blood J Am Soc Hematol 100(1):3–10. https://doi.org/10.1182/blood-2002-01-0111

    CAS 
    Article 

    Google Scholar
     

  • Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eisenberg PR, Miletich JP (1995) Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 332(14):912–917

    CAS 
    Article 

    Google Scholar
     

  • Mahmoodi BK, Tragante V, Kleber ME, Holmes MV, Schmidt AF, McCubrey RO et al (2020) Association of factor V Leiden with subsequent atherothrombotic events: a GENIUS-CHD study of individual participant data. Circulation 142(6):546–555. https://doi.org/10.1161/Circulationaha.119.045526

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ezzat H, Attia FA, Mokhtar A, El-Tokhy HM, Alalfy MN, Elkhouly NY (2014) Prevalence of thrombophilic gene polymorphisms (FVLG1691A and MTHFRC677T) in patients with myocardial infarction. Egypt J Med Hum Genet 15(2):113–123. https://doi.org/10.1016/j.ejmhg.2014.02.001

    Article 

    Google Scholar
     

  • Bagoly Z, Koncz Z, Hársfalvi J, Muszbek L (2012) Factor XIII, clot structure, thrombosis. Thromb Res 129(3):382–387. https://doi.org/10.1016/j.thromres.2011.11.040

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wartiovaara U, Mikkola H, Szôke G, Haramura G, Kárpáti L, Balogh I et al (2000) Effect of Val34Leu polymorphism on the activation of the coagulation factor XIII-A. Thromb Haemost 84(10):595–600

    CAS 
    Article 

    Google Scholar
     

  • Lim BC, Ariëns RA, Carter AM, Weisel JW, Grant PJ (2003) Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet 361(9367):1424–1431. https://doi.org/10.1016/S0140-6736(03)13135-2

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gdl R, Tàssies D, Espinosa G, Monteagudo J, Bové A, Plaza J et al (2009) Factor XIII-A subunit Val34Leu polymorphism is associated with the risk of thrombosis in patients with antiphospholipid antibodies and high fibrinogen levels. Thromb Haemost 101(02):312–316

    Article 

    Google Scholar
     

  • Amin HA-KA, Kotb-El-Sayed MI, Hashish AA, Mohamed FM, Aziz HFA, Leheta OF (2013) Correlation of FXIII Val34Leu polymorphism with decreased risk of myocardial infarction in Egypt. J Adv Med Med Res. https://doi.org/10.9734/BJMMR/2013/4730

    Article 

    Google Scholar
     

  • Vishwajeet V, Jamwal M, Sharma P, Das R, Ahluwalia J, Dogra RK et al (2018) Coagulation F13A1 V34L, fibrinogen and homocysteine versus conventional risk factors in the pathogenesis of MI in young persons. Acta Cardiol 73(4):328–334. https://doi.org/10.1080/00015385.2017.1384172

    Article 
    PubMed 

    Google Scholar
     

  • Chen F, Qiao Q, Xu P, Fan B, Chen Z (2013) Effect of Factor XIII-A Val34Leu polymorphism on myocardial infarction risk: a meta-analysis. Clin Appl Thromb Hemost 20(8):783–792. https://doi.org/10.1177/1076029613504130

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vokó Z, Bereczky Z, Katona E, Adany R, Muszbek L (2007) Factor XIII Val34Leu variant protects against coronary artery disease. Thrombos Haemost 97(03):458–463. https://doi.org/10.1160/TH06-11-0676

    CAS 
    Article 

    Google Scholar
     

  • Attié-Castro FA, Zago MA, Lavinha J, Elion J, Rodriguez-Delfin L, Guerreiro JF et al (2000) Ethnic heterogeneity of the factor XIII Val34Leu polymorphism. Thrombos Haemost 84(10):601–603. https://doi.org/10.1055/s-0037-1614074

    Article 

    Google Scholar
     

  • Sajjadi SM, Khosravi A, Pakravesh J, Soheili Z, Samiei H, Mohammadi S et al (2016) Factor XIII Val34Leu polymorphism and risk of recurrent pregnancy loss in Iranian population: a case control study. Front Biol 11(6):471–475

    CAS 
    Article 

    Google Scholar
     

  • Dayakar S, Goud KI, Reddy TPK, Rao SP, Sesikeran SB, Sadhnani M (2011) Sequence variation of the methylene tetrahydrofolate reductase gene (677C> T and 1298 A> C) and traditional risk factors in a South Indian population. Genet Test Mol Biomark 15(11):765–769. https://doi.org/10.1089/gtmb.2011.0024

    CAS 
    Article 

    Google Scholar
     

  • Kang S-S, Wong P, Susmano A, Sora J, Norusis M, Ruggie N (1991) Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 48(3):536–545

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai WKC, Kan MY (2015) Homocysteine-induced endothelial dysfunction. Ann Nutr Metabol 67(1):1–12. https://doi.org/10.1159/000437098

    CAS 
    Article 

    Google Scholar
     

  • McCully KS (2015) Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol 8(2):211–219. https://doi.org/10.1586/17512433.2015.1010516

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xu B, Kong X, Xu R, Song Y, Liu L, Zhou Z et al (2017) (2017) Homocysteine and all-cause mortality in hypertensive adults without pre-existing cardiovascular conditions: Effect modification by MTHFRC677T polymorphism. Medicine 96(8):e5862-e. https://doi.org/10.1097/MD.0000000000005862

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)