Volinski, J. (2019). Microtransit or general public demand response transit services: state of the practice. National Academies Press. https://doi.org/10.17226/25414
Chow, J., Rath, S., Yoon, G., Scalise, P., & Saenz, S. A. (2020). Spectrum of public transit operations : From fixed route to microtransit. Research report: NY-2019-069-01-00. https://doi.org/10.5281/zenodo.3672151.
Hazan, J., Lang, N., Wegscheider, A., & Fassenot, B. (2020). On-demand transit can unlock urban mobility. https://www.bcg.com/publications/2019/on-demand-transit-can-unlock-urban-mobility.
EEA (2021) Greenhouse gas emissions from transport in Europe — European Environment Agency. Retrieved December 8, 2021, from https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12.
Jenn, A. (2019). Electrifying ride-sharing: transitioning to a cleaner future. https://3rev.ucdavis.edu/policy-brief/electrifying-ride-sharing-transitioning-cleaner-future
Pavlenko, A., Slowik, P., & Lutsey, N. (2019). When does electrifying shared mobility make economic sense? https://theicct.org/publications/shared-mobility-economic-sense
Shen, Z. J. M., Feng, B., Mao, C., & Ran, L. (2019). Optimization models for electric vehicle service operations: A literature review. Transportation Research Part B: Methodological, 128, 462–477. https://doi.org/10.1016/j.trb.2019.08.006
Rahman, I., Vasant, P. M., Singh, B. S. M., Abdullah-Al-Wadud, M., & Adnan, N. (2016). Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renewable and Sustainable Energy Reviews, 58, 1039–1047. https://doi.org/10.1016/j.rser.2015.12.353
Olsen, N., & Olsen, N. (2020). A literature overview on scheduling electric vehicles in public transport and location planning of the charging infrastructure. Discussion Papers 2020/16, Free University Berlin, School of Business & Economics. Doi: https://doi.org/10.17169/refubium-28415
Deng, R., Liu, Y., Chen, W., & Liang, H. (2021). A survey on electric buses – energy storage, power management, and charging scheduling. IEEE Transactions on Intelligent Transportation Systems, 22(1), 9–22. https://doi.org/10.1109/TITS.2019.2956807
Spöttle, M., Jörling, K., Schimmel, M., Staats, M., Grizzel L., Jerram, L., Drier, W., Gartner, J. (2018). Research for TRAN committee – charging infrastructure for electric road vehicles, European Parliament, Policy Department for Structural and Cohesion Policies, Brussels.
Moloughney, T. (2021). What are the different levels of electric vehicle charging? https://www.forbes.com/wheels/advice/ev-charging-levels/.
Volkswagen Group Fleet International (2018). Electric charging for fleets Available online: https://www.volkswagenag.com/presence/konzern/group-fleet/dokumente/Compendium_Electric_charging_for_fleets.pdf.
Kucukoglu, I., Dewil, R., & Cattrysse, D. (2021). The electric vehicle routing problem and its variations: A literature review. Computers and Industrial Engineering, 161(July), 107650. https://doi.org/10.1016/j.cie.2021.107650
Fiori, C., Ahn, K., & Rakha, H. A. (2016). Power-based electric vehicle energy consumption model: Model development and validation. Applied Energy, 168, 257–268. https://doi.org/10.1016/J.APENERGY.2016.01.097
Chen, T. D., Kockelman, K. M., & Hanna, J. P. (2016). Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions. Transportation Research Part A: Policy and Practice, 94, 243–254. https://doi.org/10.1016/j.tra.2016.08.020
Ma, T. Y. (2021). Two-stage battery recharge scheduling and vehicle-charger assignment policy for dynamic electric dial-a-ride services. PLoS One, 16, 1–27. https://doi.org/10.1371/journal.pone.0251582
Zalesak, M., & Samaranayake, S. (2021). Real time operation of high-capacity electric vehicle ridesharing fleets. Transportation Research Part C: Emerging Technologies. https://doi.org/10.1016/j.trc.2021.103413
Kancharla, S. R., & Ramadurai, G. (2020). Electric vehicle routing problem with non-linear charging and load-dependent discharging. Expert Systems with Applications, 160, 113714. https://doi.org/10.1016/J.ESWA.2020.113714
Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2017). The electric vehicle routing problem with nonlinear charging function. Transportation Research Part B: Methodological, 103, 87–110. https://doi.org/10.1016/J.TRB.2017.02.004
Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies, 65, 111–127. https://doi.org/10.1016/j.trc.2016.01.013
Pantelidis, T. P., Li, L., Ma, T.-Y., Chow, J. Y. J., & Jabari, S. E. G. (2021). A node-charge graph-based online carshare rebalancing policy with capacitated electric charging. Transportation Science. https://doi.org/10.1287/trsc.2021.1058
Vallera, A. M., Nunes, P. M., & Brito, M. C. (2021). Why we need battery swapping technology. Energy Policy, 157, 112481. https://doi.org/10.1016/J.ENPOL.2021.112481
Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time windows and recharging stations. Transportation Science, 48(4), 500–520. https://doi.org/10.1287/trsc.2013.0490
Wang, Y., Bi, J., Guan, W., & Zhao, X. (2018). Optimising route choices for the travelling and charging of battery electric vehicles by considering multiple objectives. Transportation Research Part D: Transport and Environment, 64, 246–261. https://doi.org/10.1016/j.trd.2017.08.022
Lin, B., Ghaddar, B., & Nathwani, J. (2021). Electric vehicle routing with charging/discharging under time-variant electricity prices. Transportation Research Part C: Emerging Technologies, 130(December 2020), 103285. https://doi.org/10.1016/j.trc.2021.103285
Sassi, O., Cherif, W. R., Oulamara, A., & Ramdane Cherif-Khettaf, W. (2014). Vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs. working paper. https://hal.archives-ouvertes.fr/hal-01083966.
Fehn, F., Noack, F., & Busch, F. (2019). Modeling of mobility on-demand fleet operations based on dynamic electricity pricing. In MT-ITS 2019 – 6th International Conference on Models and Technologies for Intelligent Transportation Systems. Institute of Electrical and Electronics Engineers Inc. Doi: https://doi.org/10.1109/MTITS.2019.8883370.
Sweda, T. M., Dolinskaya, I. S., & Klabjan, D. (2017). Adaptive routing and recharging policies for electric vehicles. Transportation Science, 51(4), 1326–1348. https://doi.org/10.1287/trsc.2016.0724
Keskin, M., Laporte, G., & Çatay, B. (2019). Electric vehicle routing problem with time-dependent waiting times at recharging stations. Computers and Operations Research, 107, 77–94. https://doi.org/10.1016/j.cor.2019.02.014
Ammous, M., Belakaria, S., Sorour, S., & Abdel-Rahim, A. (2019). Optimal cloud-based routing with in-route charging of mobility-on-demand electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(7), 2510–2522. https://doi.org/10.1109/TITS.2018.2867519
Kullman, N., Goodson, J., & Mendoza, J. E. (2018). Dynamic electric vehicle routing: heuristics and dual bounds. Working paper. hal-01928730, version 1.
Schoenberg, S., & Dressler, F. (2021). Reducing waiting times at charging stations with adaptive electric vehicle route planning. http://arxiv.org/abs/2102.06503
Lee, J., Shon, H., Papakonstantinou, I., & Son, S. (2021). Optimal fleet, battery, and charging infrastructure planning for reliable electric bus operations. Transportation Research Part D: Transport and Environment, 100, 103066.
Guschinsky, N., Kovalyov, M. Y., Rozin, B., & Brauner, N. (2021). Fleet and charging infrastructure decisions for fast-charging city electric bus service. Computers & Operations Research, 135, 105449.
Rogge, M., Van der Hurk, E., Larsen, A., & Sauer, D. U. (2018). Electric bus fleet size and mix problem with optimization of charging infrastructure. Applied Energy, 211, 282–295.
Häll, C. H., Ceder, A., Ekström, J., & Quttineh, N. H. (2019). Adjustments of public transit operations planning process for the use of electric buses. Journal of Intelligent Transportation Systems, 23(3), 216–230.
Asghari, M., & Mirzapour Al-e-hashem, S. M. J. (2021). Green vehicle routing problem: A state-of-the-art review. International Journal of Production Economics, 231, 107899. https://doi.org/10.1016/j.ijpe.2020.107899
Schiffer, M., Schneider, M., Walther, G., & Laporte, G. (2019). Vehicle routing and location routing with intermediate stops: A review. Transportation Science, 53(2), 319–343. https://doi.org/10.1287/trsc.2018.0836
Bongiovanni, C., Kaspi, M., & Geroliminis, N. (2019). The electric autonomous dial-a-ride problem. Transportation Research Part B: Methodological, 122, 436–456. https://doi.org/10.1016/j.trb.2019.03.004
Malheiros, I., Ramalho, R., Passeti, B., Bulhões, T., & Subramanian, A. (2021). A hybrid algorithm for the multi-depot heterogeneous dial-a-ride problem. Computers & Operations Research, 129, 105196. https://doi.org/10.1016/J.COR.2020.105196
Schneider, M., Stenger, A., & Hof, J. (2015). An adaptive VNS algorithm for vehicle routing problems with intermediate stops. OR Spectrum, 37(2), 353–387. https://doi.org/10.1007/s00291-014-0376-5
Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M. Y., Petering, M., & Tou, T. W. H. (2018). A survey of dial-a-ride problems: Literature review and recent developments. Transportation Research Part B: Methodological, 111, 395–421. https://doi.org/10.1016/j.trb.2018.02.001
Xiao, Y., Zhang, Y., Kaku, I., Kang, R., & Pan, X. (2021). Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renewable and Sustainable Energy Reviews, 151, 111567. https://doi.org/10.1016/j.rser.2021.111567
Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems. European Journal of Operational Research, 202(1), 8–15. https://doi.org/10.1016/j.ejor.2009.04.024
Iacobucci, R., McLellan, B., & Tezuka, T. (2019). Optimization of shared autonomous electric vehicles operations with charge scheduling and vehicle-to-grid. Transportation Research Part C: Emerging Technologies, 100(July 2018), 34–52. https://doi.org/10.1016/j.trc.2019.01.011
Bongiovanni, C. (2020). The electric autonomous dial-a-ride problem. École Polytechnique Fédérale de Lausanne.
Yi, Z., & Smart, J. (2021). A framework for integrated dispatching and charging management of an autonomous electric vehicle ride-hailing fleet. Transportation Research Part D: Transport and Environment, 95(April), 102822. https://doi.org/10.1016/j.trd.2021.102822
Ma, T.-Y., Pantelidis, T., & Chow, J. Y. J. (2019). Optimal queueing-based rebalancing for one-way electric carsharing systems with stochastic demand. In Proceedings of the 98th Annual Meeting of the Transportation Research Board, Paper No. 19-05278 (pp. 1–17).
Al-Kanj, L., Nascimento, J., & Powell, W. B. (2020). Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles. European Journal of Operational Research, 284(3), 1088–1106. https://doi.org/10.1016/j.ejor.2020.01.033
Shi, J., Gao, Y., Wang, W., Yu, N., & Ioannou, P. A. (2020). Operating electric vehicle fleet for ride-hailing services with reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4822–4834. https://doi.org/10.1109/TITS.2019.2947408
Guo, G., & Xu, Y. (2020). A deep reinforcement learning approach to ride-sharing vehicles dispatching in autonomous mobility-on-demand systems. IEEE Intelligent Transportation Systems Magazine. https://doi.org/10.1109/MITS.2019.2962159
Lin, K., Zhao, R., Xu, Z., & Zhou, J. (2018). Efficient large-scale fleet management via multi-agent deep reinforcement learning. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1774–1783. Doi: https://doi.org/10.1145/3219819.3219993.
Kullman, N. D., Cousineau, M., Goodson, J. C., & Mendoza, J. E. (2021). Dynamic ride-hailing with electric vehicles. Transportation Science. https://doi.org/10.1287/trsc.2021.1042
Yu, G., Liu, A., Zhang, J., & Sun, H. (2021). Optimal operations planning of electric autonomous vehicles via asynchronous learning in ride-hailing systems. Omega, 103, 102448. https://doi.org/10.1016/j.omega.2021.102448
Beaujon, G. J., & Turnquist, M. A. (1991). Model for fleet sizing and vehicle allocation. Transportation Science, 25(1), 19–45. https://doi.org/10.1287/trsc.25.1.19
Hiermann, G., Puchinger, J., Ropke, S., & Hartl, R. F. (2016). The electric fleet size and mix vehicle routing problem with time windows and recharging stations. European Journal of Operational Research, 252(3), 995–1018. https://doi.org/10.1016/j.ejor.2016.01.038
Rezgui, D., ChaouachiSiala, J., Aggoune-Mtalaa, W., & Bouziri, H. (2019). Application of a variable neighborhood search algorithm to a fleet size and mix vehicle routing problem with electric modular vehicles. Computers and Industrial Engineering, 130, 537–550. https://doi.org/10.1016/j.cie.2019.03.001
Winter, K., Cats, O., Correia, G., & van Arem, B. (2018). Performance analysis and fleet requirements of automated demand-responsive transport systems as an urban public transport service. International Journal of Transportation Science and Technology, 7(2), 151–167. https://doi.org/10.1016/j.ijtst.2018.04.004
Sayarshad, H. R., & Tavakkoli-Moghaddam, R. (2010). Solving a multi periodic stochastic model of the rail-car fleet sizing by two-stage optimization formulation. Applied Mathematical Modelling, 34(5), 1164–1174. https://doi.org/10.1016/j.apm.2009.08.004
Schiffer, M., & Walther, G. (2018). Strategic planning of electric logistics fleet networks: A robust location-routing approach. Omega (United Kingdom), 80, 31–42. https://doi.org/10.1016/j.omega.2017.09.003
Guo, Z., Hao, M., Yu, B., & Yao, B. (2021). Robust minimum fleet problem for autonomous and human-driven vehicles in on-demand ride services considering mixed operation zones. Transportation Research Part C: Emerging Technologies, 132, 103390. https://doi.org/10.1016/j.trc.2021.103390
Shehadeh, K. S., Wang, H., & Zhang, P. (2021). Fleet sizing and allocation for on-demand last-mile transportation systems. Transportation Research Part C: Emerging Technologies. https://doi.org/10.1016/j.trc.2021.103387
Liu, H., & Wang, D. Z. W. (2017). Locating multiple types of charging facilities for battery electric vehicles. Transportation Research Part B: Methodological, 103, 30–55. https://doi.org/10.1016/j.trb.2017.01.005
Jung, J., Chow, J. Y. J., Jayakrishnan, R., & Park, J. Y. (2014). Stochastic dynamic itinerary interception refueling location problem with queue delay for electric taxi charging stations. Transportation Research Part C: Emerging Technologies, 40, 123–142. https://doi.org/10.1016/j.trc.2014.01.008
Kchaou-Boujelben, M. (2021). Charging station location problem: A comprehensive review on models and solution approaches. Transportation Research Part C: Emerging Technologies, 132(November), 103376. https://doi.org/10.1016/j.trc.2021.103376
Deb, S., Tammi, K., Kalita, K., & Mahanta, P. (2018). Review of recent trends in charging infrastructure planning for electric vehicles. Wiley Interdisciplinary Reviews: Energy and Environment, 7(6), 1–26. https://doi.org/10.1002/wene.306
Pagany, R., Ramirez Camargo, L., & Dorner, W. (2019). A review of spatial localization methodologies for the electric vehicle charging infrastructure. International Journal of Sustainable Transportation, 13(6), 433–449. https://doi.org/10.1080/15568318.2018.1481243
Kunith, A., Goehlich, D., & Mendelevitch, R. (2014). Planning and optimization of a fast-charging infrastructure for electric urban bus systems. In Proceedings of the 2nd International Conference on Traffic and Transport Engineering (pp. 43–51). DIW Berlin.
Wu, X., Feng, Q., Bai, C., Lai, C. S., Jia, Y., & Lai, L. L. (2021). A novel fast-charging stations locational planning model for electric bus transit system. Energy, 224, 120106. https://doi.org/10.1016/J.ENERGY.2021.120106
An, K. (2020). Battery electric bus infrastructure planning under demand uncertainty. Transportation Research Part C: Emerging Technologies, 111, 572–587. https://doi.org/10.1016/J.TRC.2020.01.009
Schiffer, M., & Walther, G. (2017). The electric location routing problem with time windows and partial recharging. European Journal of Operational Research, 260(3), 995–1013. https://doi.org/10.1016/j.ejor.2017.01.011
Hua, Y., Zhao, D., Wang, X., & Li, X. (2019). Joint infrastructure planning and fleet management for one-way electric car sharing under time-varying uncertain demand. Transportation Research Part B: Methodological, 128, 185–206. https://doi.org/10.1016/j.trb.2019.07.005
Stumpe, M., Rößler, D., Schryen, G., & Kliewer, N. (2021). Study on sensitivity of electric bus systems under simultaneous optimization of charging infrastructure and vehicle schedules. EURO Journal on Transportation and Logistics, 10, 100049. https://doi.org/10.1016/j.ejtl.2021.100049
Lokhandwala, M., & Cai, H. (2020). Siting charging stations for electric vehicle adoption in shared autonomous fleets. Transportation Research Part D: Transport and Environment, 80, 102231. https://doi.org/10.1016/j.trd.2020.102231
Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2), 254–265. https://doi.org/10.1287/opre.35.2.254
Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and Transportation Review, 71, 111–128. https://doi.org/10.1016/j.tre.2014.09.003
Froger, A., Jabali, O., Mendoza, J. E., & Laporte, G. (2021). The electric vehicle routing problem with capacitated charging stations. Transportation Science.
Kullman, N. D., Froger, A., Mendoza, J. E., & Goodson, J. C. (2021). frvcpy: An open-source solver for the fixed route vehicle charging problem. INFORMS Journal on Computing 33(4):1277-1283. https://doi.org/10.1287/ijoc.2020.1035
Pessoa, A., Sadykov, R., Uchoa, E., & Vanderbeck, F. (2020). A generic exact solver for vehicle routing and related problems. Mathematical Programming, 183(1), 483–523. https://doi.org/10.1007/S10107-020-01523-Z
Abdelwahed, A., van den Berg, P. L., Brandt, T., Collins, J., & Ketter, W. (2020). Evaluating and optimizing opportunity fast-charging schedules in transit battery electric bus networks. Transportation Science, 54(6), 1601–1615. https://doi.org/10.1287/trsc.2020.0982
Mohamed, M., Farag, H., El-Taweel, N., & Ferguson, M. (2017). Simulation of electric buses on a full transit network: Operational feasibility and grid impact analysis. Electric Power Systems Research, 142, 163–175. https://doi.org/10.1016/j.epsr.2016.09.032
Hu, J., Morais, H., Sousa, T., & Lind, M. (2016). Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects. Renewable and Sustainable Energy Reviews, 56, 1207–1226. https://doi.org/10.1016/j.rser.2015.12.014
Wellik, T. K., Griffin, J. R., Kockelman, K. M., & Mohamed, M. (2021). Utility-transit nexus: Leveraging intelligently charged electrified transit to support a renewable energy grid. Renewable and Sustainable Energy Reviews, 139, 110657. https://doi.org/10.1016/j.rser.2020.110657
Bertsimas, D., Griffith, J. D., Gupta, V., Kochenderfer, M. J., & Mišić, V. V. (2017). A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource allocation problems. European Journal of Operational Research, 263(2), 664–678. https://doi.org/10.1016/j.ejor.2017.05.032
Balac, M., Becker, H., Ciari, F., & Axhausen, K. W. (2019). Modeling competing free-floating carsharing operators—A case study for Zurich, Switzerland. Transportation Research Part C. https://doi.org/10.1016/j.trc.2018.11.011
Dias, A., Telhada, J., & Carvalho, M. S. (2012). Simulation approach for an integrated decision support system for demand responsive transport planning and operation. In: 10th International Industrial Simulation Conference 2012, ISC 2012, pp. 130–138.
Horn, M. E. T. (2002). Multi-modal and demand-responsive passenger transport systems: A modelling framework with embedded control systems. Transportation Research Part A: Policy and Practice, 36(2), 167–188. https://doi.org/10.1016/S0965-8564(00)00043-4
Danandeh, A., Zeng, B., Caldwell, B., & Buckley, B. (2016). A decision support system for fuel supply chain design at tampa electric company. Interfaces, 46(6), 503–521. https://doi.org/10.1287/inte.2016.0870
Saad, W., Han, Z., Poor, H. V., & Başar, T. (2012). Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine, 29(5), 86–105. https://doi.org/10.1109/MSP.2012.2186410
Zhang, Y., Lu, M., & Shen, S. (2021). On the values of vehicle-To-grid electricity selling in electric vehicle sharing. Manufacturing and Service Operations Management, 23(2), 488–507. https://doi.org/10.1287/msom.2019.0855
Zhu, M., Liu, X. Y., & Wang, X. (2018). Joint transportation and charging scheduling in public vehicle systems—A game theoretic approach. IEEE Transactions on Intelligent Transportation Systems, 19(8), 2407–2419. https://doi.org/10.1109/TITS.2018.2817484
Araki, K., Ji, L., Kelly, G., & Yamaguchi, M. (2018). To do list for research and development and international standardization to achieve the goal of running a majority of electric vehicles on solar energy. Coatings, 8(7), 251. https://doi.org/10.3390/coatings8070251
Lin, Y., Zhang, K., Shen, Z. J. M., Ye, B., & Miao, L. (2019). Multistage large-scale charging station planning for electric buses considering transportation network and power grid. Transportation Research Part C: Emerging Technologies, 107, 423–443. https://doi.org/10.1016/j.trc.2019.08.009
Cordeau, J. F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54(3), 573–586. https://doi.org/10.1287/opre.1060.0283
Chen, T., Zhang, B., Pourbabak, H., Kavousi-Fard, A., & Su, W. (2018). Optimal routing and charging of an electric vehicle fleet for high-efficiency dynamic transit systems. IEEE Transactions on Smart Grid, 9(4), 3563–3572. https://doi.org/10.1109/TSG.2016.2635025
Ma, T. Y., & Xie, S. (2021). Optimal fast charging station locations for electric ridesharing with vehicle-charging station assignment. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2020.102682
Mendoza, J., Guéret, C., Hoskins, M., Lobit, H., Pillac, V., Vidal, T., & Vigo, D. (2014). VRP-REP: the vehicle routing problem repository. Retrieved December 9, 2021, from http://www.vrp-rep.org/
Zhang, H., Sheppard, C. J. R., Lipman, T. E., & Moura, S. J. (2020). Joint fleet sizing and charging system planning for autonomous electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4725–4738. https://doi.org/10.1109/TITS.2019.2946152
Ziad, C., Rajamani, H. S., & Manikas, I. (2019). Game-theoretic Approach to Fleet management for vehicle to grid services. In 2019 IEEE 19th International Symposium on Signal Processing and Information Technology, ISSPIT 2019. Doi: https://doi.org/10.1109/ISSPIT47144.2019.9001748.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)