• Volinski, J. (2019). Microtransit or general public demand response transit services: state of the practice. National Academies Press. https://doi.org/10.17226/25414

    Book 

    Google Scholar
     

  • Chow, J., Rath, S., Yoon, G., Scalise, P., & Saenz, S. A. (2020). Spectrum of public transit operations : From fixed route to microtransit. Research report: NY-2019-069-01-00. https://doi.org/10.5281/zenodo.3672151.

  • Hazan, J., Lang, N., Wegscheider, A., & Fassenot, B. (2020). On-demand transit can unlock urban mobility. https://www.bcg.com/publications/2019/on-demand-transit-can-unlock-urban-mobility.

  • EEA (2021) Greenhouse gas emissions from transport in Europe — European Environment Agency. Retrieved December 8, 2021, from https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12.

  • Jenn, A. (2019). Electrifying ride-sharing: transitioning to a cleaner future. https://3rev.ucdavis.edu/policy-brief/electrifying-ride-sharing-transitioning-cleaner-future

  • Pavlenko, A., Slowik, P., & Lutsey, N. (2019). When does electrifying shared mobility make economic sense? https://theicct.org/publications/shared-mobility-economic-sense

  • Shen, Z. J. M., Feng, B., Mao, C., & Ran, L. (2019). Optimization models for electric vehicle service operations: A literature review. Transportation Research Part B: Methodological, 128, 462–477. https://doi.org/10.1016/j.trb.2019.08.006

    Article 

    Google Scholar
     

  • Rahman, I., Vasant, P. M., Singh, B. S. M., Abdullah-Al-Wadud, M., & Adnan, N. (2016). Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renewable and Sustainable Energy Reviews, 58, 1039–1047. https://doi.org/10.1016/j.rser.2015.12.353

    Article 

    Google Scholar
     

  • Olsen, N., & Olsen, N. (2020). A literature overview on scheduling electric vehicles in public transport and location planning of the charging infrastructure. Discussion Papers 2020/16, Free University Berlin, School of Business & Economics. Doi: https://doi.org/10.17169/refubium-28415

  • Deng, R., Liu, Y., Chen, W., & Liang, H. (2021). A survey on electric buses – energy storage, power management, and charging scheduling. IEEE Transactions on Intelligent Transportation Systems, 22(1), 9–22. https://doi.org/10.1109/TITS.2019.2956807

    Article 

    Google Scholar
     

  • Spöttle, M., Jörling, K., Schimmel, M., Staats, M., Grizzel L., Jerram, L., Drier, W., Gartner, J. (2018). Research for TRAN committee – charging infrastructure for electric road vehicles, European Parliament, Policy Department for Structural and Cohesion Policies, Brussels.

  • Moloughney, T. (2021). What are the different levels of electric vehicle charging? https://www.forbes.com/wheels/advice/ev-charging-levels/.

  • Volkswagen Group Fleet International (2018). Electric charging for fleets Available online: https://www.volkswagenag.com/presence/konzern/group-fleet/dokumente/Compendium_Electric_charging_for_fleets.pdf.

  • Kucukoglu, I., Dewil, R., & Cattrysse, D. (2021). The electric vehicle routing problem and its variations: A literature review. Computers and Industrial Engineering, 161(July), 107650. https://doi.org/10.1016/j.cie.2021.107650

    Article 

    Google Scholar
     

  • Fiori, C., Ahn, K., & Rakha, H. A. (2016). Power-based electric vehicle energy consumption model: Model development and validation. Applied Energy, 168, 257–268. https://doi.org/10.1016/J.APENERGY.2016.01.097

    Article 

    Google Scholar
     

  • Chen, T. D., Kockelman, K. M., & Hanna, J. P. (2016). Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions. Transportation Research Part A: Policy and Practice, 94, 243–254. https://doi.org/10.1016/j.tra.2016.08.020

    Article 

    Google Scholar
     

  • Ma, T. Y. (2021). Two-stage battery recharge scheduling and vehicle-charger assignment policy for dynamic electric dial-a-ride services. PLoS One, 16, 1–27. https://doi.org/10.1371/journal.pone.0251582

    Article 

    Google Scholar
     

  • Zalesak, M., & Samaranayake, S. (2021). Real time operation of high-capacity electric vehicle ridesharing fleets. Transportation Research Part C: Emerging Technologies.  https://doi.org/10.1016/j.trc.2021.103413

    Article 

    Google Scholar
     

  • Kancharla, S. R., & Ramadurai, G. (2020). Electric vehicle routing problem with non-linear charging and load-dependent discharging. Expert Systems with Applications, 160, 113714. https://doi.org/10.1016/J.ESWA.2020.113714

    Article 

    Google Scholar
     

  • Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2017). The electric vehicle routing problem with nonlinear charging function. Transportation Research Part B: Methodological, 103, 87–110. https://doi.org/10.1016/J.TRB.2017.02.004

    Article 

    Google Scholar
     

  • Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies, 65, 111–127. https://doi.org/10.1016/j.trc.2016.01.013

    Article 

    Google Scholar
     

  • Pantelidis, T. P., Li, L., Ma, T.-Y., Chow, J. Y. J., & Jabari, S. E. G. (2021). A node-charge graph-based online carshare rebalancing policy with capacitated electric charging. Transportation Science. https://doi.org/10.1287/trsc.2021.1058

    Article 

    Google Scholar
     

  • Vallera, A. M., Nunes, P. M., & Brito, M. C. (2021). Why we need battery swapping technology. Energy Policy, 157, 112481. https://doi.org/10.1016/J.ENPOL.2021.112481

    Article 

    Google Scholar
     

  • Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time windows and recharging stations. Transportation Science, 48(4), 500–520. https://doi.org/10.1287/trsc.2013.0490

    Article 

    Google Scholar
     

  • Wang, Y., Bi, J., Guan, W., & Zhao, X. (2018). Optimising route choices for the travelling and charging of battery electric vehicles by considering multiple objectives. Transportation Research Part D: Transport and Environment, 64, 246–261. https://doi.org/10.1016/j.trd.2017.08.022

    Article 

    Google Scholar
     

  • Lin, B., Ghaddar, B., & Nathwani, J. (2021). Electric vehicle routing with charging/discharging under time-variant electricity prices. Transportation Research Part C: Emerging Technologies, 130(December 2020), 103285. https://doi.org/10.1016/j.trc.2021.103285

    Article 

    Google Scholar
     

  • Sassi, O., Cherif, W. R., Oulamara, A., & Ramdane Cherif-Khettaf, W. (2014). Vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs. working paper. https://hal.archives-ouvertes.fr/hal-01083966.

  • Fehn, F., Noack, F., & Busch, F. (2019). Modeling of mobility on-demand fleet operations based on dynamic electricity pricing. In MT-ITS 2019 – 6th International Conference on Models and Technologies for Intelligent Transportation Systems. Institute of Electrical and Electronics Engineers Inc. Doi: https://doi.org/10.1109/MTITS.2019.8883370.

  • Sweda, T. M., Dolinskaya, I. S., & Klabjan, D. (2017). Adaptive routing and recharging policies for electric vehicles. Transportation Science, 51(4), 1326–1348. https://doi.org/10.1287/trsc.2016.0724

    Article 

    Google Scholar
     

  • Keskin, M., Laporte, G., & Çatay, B. (2019). Electric vehicle routing problem with time-dependent waiting times at recharging stations. Computers and Operations Research, 107, 77–94. https://doi.org/10.1016/j.cor.2019.02.014

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Ammous, M., Belakaria, S., Sorour, S., & Abdel-Rahim, A. (2019). Optimal cloud-based routing with in-route charging of mobility-on-demand electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(7), 2510–2522. https://doi.org/10.1109/TITS.2018.2867519

    Article 

    Google Scholar
     

  • Kullman, N., Goodson, J., & Mendoza, J. E. (2018). Dynamic electric vehicle routing: heuristics and dual bounds. Working paper. hal-01928730, version 1.

  • Schoenberg, S., & Dressler, F. (2021). Reducing waiting times at charging stations with adaptive electric vehicle route planning. http://arxiv.org/abs/2102.06503

  • Lee, J., Shon, H., Papakonstantinou, I., & Son, S. (2021). Optimal fleet, battery, and charging infrastructure planning for reliable electric bus operations. Transportation Research Part D: Transport and Environment, 100, 103066.

    Article 

    Google Scholar
     

  • Guschinsky, N., Kovalyov, M. Y., Rozin, B., & Brauner, N. (2021). Fleet and charging infrastructure decisions for fast-charging city electric bus service. Computers & Operations Research, 135, 105449.

    MathSciNet 
    Article 

    Google Scholar
     

  • Rogge, M., Van der Hurk, E., Larsen, A., & Sauer, D. U. (2018). Electric bus fleet size and mix problem with optimization of charging infrastructure. Applied Energy, 211, 282–295.

    Article 

    Google Scholar
     

  • Häll, C. H., Ceder, A., Ekström, J., & Quttineh, N. H. (2019). Adjustments of public transit operations planning process for the use of electric buses. Journal of Intelligent Transportation Systems, 23(3), 216–230.

    Article 

    Google Scholar
     

  • Asghari, M., & Mirzapour Al-e-hashem, S. M. J. (2021). Green vehicle routing problem: A state-of-the-art review. International Journal of Production Economics, 231, 107899. https://doi.org/10.1016/j.ijpe.2020.107899

    Article 

    Google Scholar
     

  • Schiffer, M., Schneider, M., Walther, G., & Laporte, G. (2019). Vehicle routing and location routing with intermediate stops: A review. Transportation Science, 53(2), 319–343. https://doi.org/10.1287/trsc.2018.0836

    Article 

    Google Scholar
     

  • Bongiovanni, C., Kaspi, M., & Geroliminis, N. (2019). The electric autonomous dial-a-ride problem. Transportation Research Part B: Methodological, 122, 436–456. https://doi.org/10.1016/j.trb.2019.03.004

    Article 

    Google Scholar
     

  • Malheiros, I., Ramalho, R., Passeti, B., Bulhões, T., & Subramanian, A. (2021). A hybrid algorithm for the multi-depot heterogeneous dial-a-ride problem. Computers & Operations Research, 129, 105196. https://doi.org/10.1016/J.COR.2020.105196

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Schneider, M., Stenger, A., & Hof, J. (2015). An adaptive VNS algorithm for vehicle routing problems with intermediate stops. OR Spectrum, 37(2), 353–387. https://doi.org/10.1007/s00291-014-0376-5

    Article 
    MATH 

    Google Scholar
     

  • Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M. Y., Petering, M., & Tou, T. W. H. (2018). A survey of dial-a-ride problems: Literature review and recent developments. Transportation Research Part B: Methodological, 111, 395–421. https://doi.org/10.1016/j.trb.2018.02.001

    Article 

    Google Scholar
     

  • Xiao, Y., Zhang, Y., Kaku, I., Kang, R., & Pan, X. (2021). Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renewable and Sustainable Energy Reviews, 151, 111567. https://doi.org/10.1016/j.rser.2021.111567

    Article 

    Google Scholar
     

  • Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems. European Journal of Operational Research, 202(1), 8–15. https://doi.org/10.1016/j.ejor.2009.04.024

    Article 
    MATH 

    Google Scholar
     

  • Iacobucci, R., McLellan, B., & Tezuka, T. (2019). Optimization of shared autonomous electric vehicles operations with charge scheduling and vehicle-to-grid. Transportation Research Part C: Emerging Technologies, 100(July 2018), 34–52. https://doi.org/10.1016/j.trc.2019.01.011

    Article 

    Google Scholar
     

  • Bongiovanni, C. (2020). The electric autonomous dial-a-ride problem. École Polytechnique Fédérale de Lausanne.

  • Yi, Z., & Smart, J. (2021). A framework for integrated dispatching and charging management of an autonomous electric vehicle ride-hailing fleet. Transportation Research Part D: Transport and Environment, 95(April), 102822. https://doi.org/10.1016/j.trd.2021.102822

    Article 

    Google Scholar
     

  • Ma, T.-Y., Pantelidis, T., & Chow, J. Y. J. (2019). Optimal queueing-based rebalancing for one-way electric carsharing systems with stochastic demand. In Proceedings of the 98th Annual Meeting of the Transportation Research Board, Paper No. 19-05278 (pp. 1–17).

  • Al-Kanj, L., Nascimento, J., & Powell, W. B. (2020). Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles. European Journal of Operational Research, 284(3), 1088–1106. https://doi.org/10.1016/j.ejor.2020.01.033

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Shi, J., Gao, Y., Wang, W., Yu, N., & Ioannou, P. A. (2020). Operating electric vehicle fleet for ride-hailing services with reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4822–4834. https://doi.org/10.1109/TITS.2019.2947408

    Article 

    Google Scholar
     

  • Guo, G., & Xu, Y. (2020). A deep reinforcement learning approach to ride-sharing vehicles dispatching in autonomous mobility-on-demand systems. IEEE Intelligent Transportation Systems Magazine. https://doi.org/10.1109/MITS.2019.2962159

    Article 

    Google Scholar
     

  • Lin, K., Zhao, R., Xu, Z., & Zhou, J. (2018). Efficient large-scale fleet management via multi-agent deep reinforcement learning. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1774–1783. Doi: https://doi.org/10.1145/3219819.3219993.

  • Kullman, N. D., Cousineau, M., Goodson, J. C., & Mendoza, J. E. (2021). Dynamic ride-hailing with electric vehicles. Transportation Science. https://doi.org/10.1287/trsc.2021.1042

    Article 

    Google Scholar
     

  • Yu, G., Liu, A., Zhang, J., & Sun, H. (2021). Optimal operations planning of electric autonomous vehicles via asynchronous learning in ride-hailing systems. Omega, 103, 102448. https://doi.org/10.1016/j.omega.2021.102448

    Article 

    Google Scholar
     

  • Beaujon, G. J., & Turnquist, M. A. (1991). Model for fleet sizing and vehicle allocation. Transportation Science, 25(1), 19–45. https://doi.org/10.1287/trsc.25.1.19

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Hiermann, G., Puchinger, J., Ropke, S., & Hartl, R. F. (2016). The electric fleet size and mix vehicle routing problem with time windows and recharging stations. European Journal of Operational Research, 252(3), 995–1018. https://doi.org/10.1016/j.ejor.2016.01.038

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Rezgui, D., ChaouachiSiala, J., Aggoune-Mtalaa, W., & Bouziri, H. (2019). Application of a variable neighborhood search algorithm to a fleet size and mix vehicle routing problem with electric modular vehicles. Computers and Industrial Engineering, 130, 537–550. https://doi.org/10.1016/j.cie.2019.03.001

    Article 

    Google Scholar
     

  • Winter, K., Cats, O., Correia, G., & van Arem, B. (2018). Performance analysis and fleet requirements of automated demand-responsive transport systems as an urban public transport service. International Journal of Transportation Science and Technology, 7(2), 151–167. https://doi.org/10.1016/j.ijtst.2018.04.004

    Article 

    Google Scholar
     

  • Sayarshad, H. R., & Tavakkoli-Moghaddam, R. (2010). Solving a multi periodic stochastic model of the rail-car fleet sizing by two-stage optimization formulation. Applied Mathematical Modelling, 34(5), 1164–1174. https://doi.org/10.1016/j.apm.2009.08.004

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Schiffer, M., & Walther, G. (2018). Strategic planning of electric logistics fleet networks: A robust location-routing approach. Omega (United Kingdom), 80, 31–42. https://doi.org/10.1016/j.omega.2017.09.003

    Article 

    Google Scholar
     

  • Guo, Z., Hao, M., Yu, B., & Yao, B. (2021). Robust minimum fleet problem for autonomous and human-driven vehicles in on-demand ride services considering mixed operation zones. Transportation Research Part C: Emerging Technologies, 132, 103390. https://doi.org/10.1016/j.trc.2021.103390

    Article 

    Google Scholar
     

  • Shehadeh, K. S., Wang, H., & Zhang, P. (2021). Fleet sizing and allocation for on-demand last-mile transportation systems. Transportation Research Part C: Emerging Technologies. https://doi.org/10.1016/j.trc.2021.103387

    Article 

    Google Scholar
     

  • Liu, H., & Wang, D. Z. W. (2017). Locating multiple types of charging facilities for battery electric vehicles. Transportation Research Part B: Methodological, 103, 30–55. https://doi.org/10.1016/j.trb.2017.01.005

    Article 

    Google Scholar
     

  • Jung, J., Chow, J. Y. J., Jayakrishnan, R., & Park, J. Y. (2014). Stochastic dynamic itinerary interception refueling location problem with queue delay for electric taxi charging stations. Transportation Research Part C: Emerging Technologies, 40, 123–142. https://doi.org/10.1016/j.trc.2014.01.008

    Article 

    Google Scholar
     

  • Kchaou-Boujelben, M. (2021). Charging station location problem: A comprehensive review on models and solution approaches. Transportation Research Part C: Emerging Technologies, 132(November), 103376. https://doi.org/10.1016/j.trc.2021.103376

    Article 

    Google Scholar
     

  • Deb, S., Tammi, K., Kalita, K., & Mahanta, P. (2018). Review of recent trends in charging infrastructure planning for electric vehicles. Wiley Interdisciplinary Reviews: Energy and Environment, 7(6), 1–26. https://doi.org/10.1002/wene.306

    Article 

    Google Scholar
     

  • Pagany, R., Ramirez Camargo, L., & Dorner, W. (2019). A review of spatial localization methodologies for the electric vehicle charging infrastructure. International Journal of Sustainable Transportation, 13(6), 433–449. https://doi.org/10.1080/15568318.2018.1481243

    Article 

    Google Scholar
     

  • Kunith, A., Goehlich, D., & Mendelevitch, R. (2014). Planning and optimization of a fast-charging infrastructure for electric urban bus systems. In Proceedings of the 2nd International Conference on Traffic and Transport Engineering (pp. 43–51). DIW Berlin.

  • Wu, X., Feng, Q., Bai, C., Lai, C. S., Jia, Y., & Lai, L. L. (2021). A novel fast-charging stations locational planning model for electric bus transit system. Energy, 224, 120106. https://doi.org/10.1016/J.ENERGY.2021.120106

    Article 

    Google Scholar
     

  • An, K. (2020). Battery electric bus infrastructure planning under demand uncertainty. Transportation Research Part C: Emerging Technologies, 111, 572–587. https://doi.org/10.1016/J.TRC.2020.01.009

    Article 

    Google Scholar
     

  • Schiffer, M., & Walther, G. (2017). The electric location routing problem with time windows and partial recharging. European Journal of Operational Research, 260(3), 995–1013. https://doi.org/10.1016/j.ejor.2017.01.011

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Hua, Y., Zhao, D., Wang, X., & Li, X. (2019). Joint infrastructure planning and fleet management for one-way electric car sharing under time-varying uncertain demand. Transportation Research Part B: Methodological, 128, 185–206. https://doi.org/10.1016/j.trb.2019.07.005

    Article 

    Google Scholar
     

  • Stumpe, M., Rößler, D., Schryen, G., & Kliewer, N. (2021). Study on sensitivity of electric bus systems under simultaneous optimization of charging infrastructure and vehicle schedules. EURO Journal on Transportation and Logistics, 10, 100049. https://doi.org/10.1016/j.ejtl.2021.100049

    Article 

    Google Scholar
     

  • Lokhandwala, M., & Cai, H. (2020). Siting charging stations for electric vehicle adoption in shared autonomous fleets. Transportation Research Part D: Transport and Environment, 80, 102231. https://doi.org/10.1016/j.trd.2020.102231

    Article 

    Google Scholar
     

  • Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2), 254–265. https://doi.org/10.1287/opre.35.2.254

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and Transportation Review, 71, 111–128. https://doi.org/10.1016/j.tre.2014.09.003

    Article 

    Google Scholar
     

  • Froger, A., Jabali, O., Mendoza, J. E., & Laporte, G. (2021). The electric vehicle routing problem with capacitated charging stations. Transportation Science.

  • Kullman, N. D., Froger, A., Mendoza, J. E., & Goodson, J. C. (2021). frvcpy: An open-source solver for the fixed route vehicle charging problem. INFORMS Journal on Computing 33(4):1277-1283. https://doi.org/10.1287/ijoc.2020.1035

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Pessoa, A., Sadykov, R., Uchoa, E., & Vanderbeck, F. (2020). A generic exact solver for vehicle routing and related problems. Mathematical Programming, 183(1), 483–523. https://doi.org/10.1007/S10107-020-01523-Z

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Abdelwahed, A., van den Berg, P. L., Brandt, T., Collins, J., & Ketter, W. (2020). Evaluating and optimizing opportunity fast-charging schedules in transit battery electric bus networks. Transportation Science, 54(6), 1601–1615. https://doi.org/10.1287/trsc.2020.0982

    Article 

    Google Scholar
     

  • Mohamed, M., Farag, H., El-Taweel, N., & Ferguson, M. (2017). Simulation of electric buses on a full transit network: Operational feasibility and grid impact analysis. Electric Power Systems Research, 142, 163–175. https://doi.org/10.1016/j.epsr.2016.09.032

    Article 

    Google Scholar
     

  • Hu, J., Morais, H., Sousa, T., & Lind, M. (2016). Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects. Renewable and Sustainable Energy Reviews, 56, 1207–1226. https://doi.org/10.1016/j.rser.2015.12.014

    Article 

    Google Scholar
     

  • Wellik, T. K., Griffin, J. R., Kockelman, K. M., & Mohamed, M. (2021). Utility-transit nexus: Leveraging intelligently charged electrified transit to support a renewable energy grid. Renewable and Sustainable Energy Reviews, 139, 110657. https://doi.org/10.1016/j.rser.2020.110657

    Article 

    Google Scholar
     

  • Bertsimas, D., Griffith, J. D., Gupta, V., Kochenderfer, M. J., & Mišić, V. V. (2017). A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource allocation problems. European Journal of Operational Research, 263(2), 664–678. https://doi.org/10.1016/j.ejor.2017.05.032

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Balac, M., Becker, H., Ciari, F., & Axhausen, K. W. (2019). Modeling competing free-floating carsharing operators—A case study for Zurich, Switzerland. Transportation Research Part C. https://doi.org/10.1016/j.trc.2018.11.011

    Article 

    Google Scholar
     

  • Dias, A., Telhada, J., & Carvalho, M. S. (2012). Simulation approach for an integrated decision support system for demand responsive transport planning and operation. In: 10th International Industrial Simulation Conference 2012, ISC 2012, pp. 130–138.

  • Horn, M. E. T. (2002). Multi-modal and demand-responsive passenger transport systems: A modelling framework with embedded control systems. Transportation Research Part A: Policy and Practice, 36(2), 167–188. https://doi.org/10.1016/S0965-8564(00)00043-4

    Article 

    Google Scholar
     

  • Danandeh, A., Zeng, B., Caldwell, B., & Buckley, B. (2016). A decision support system for fuel supply chain design at tampa electric company. Interfaces, 46(6), 503–521. https://doi.org/10.1287/inte.2016.0870

    Article 

    Google Scholar
     

  • Saad, W., Han, Z., Poor, H. V., & Başar, T. (2012). Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine, 29(5), 86–105. https://doi.org/10.1109/MSP.2012.2186410

    Article 

    Google Scholar
     

  • Zhang, Y., Lu, M., & Shen, S. (2021). On the values of vehicle-To-grid electricity selling in electric vehicle sharing. Manufacturing and Service Operations Management, 23(2), 488–507. https://doi.org/10.1287/msom.2019.0855

    Article 

    Google Scholar
     

  • Zhu, M., Liu, X. Y., & Wang, X. (2018). Joint transportation and charging scheduling in public vehicle systems—A game theoretic approach. IEEE Transactions on Intelligent Transportation Systems, 19(8), 2407–2419. https://doi.org/10.1109/TITS.2018.2817484

    Article 

    Google Scholar
     

  • Araki, K., Ji, L., Kelly, G., & Yamaguchi, M. (2018). To do list for research and development and international standardization to achieve the goal of running a majority of electric vehicles on solar energy. Coatings, 8(7), 251. https://doi.org/10.3390/coatings8070251

    Article 

    Google Scholar
     

  • Lin, Y., Zhang, K., Shen, Z. J. M., Ye, B., & Miao, L. (2019). Multistage large-scale charging station planning for electric buses considering transportation network and power grid. Transportation Research Part C: Emerging Technologies, 107, 423–443. https://doi.org/10.1016/j.trc.2019.08.009

    Article 

    Google Scholar
     

  • Cordeau, J. F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54(3), 573–586. https://doi.org/10.1287/opre.1060.0283

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Chen, T., Zhang, B., Pourbabak, H., Kavousi-Fard, A., & Su, W. (2018). Optimal routing and charging of an electric vehicle fleet for high-efficiency dynamic transit systems. IEEE Transactions on Smart Grid, 9(4), 3563–3572. https://doi.org/10.1109/TSG.2016.2635025

    Article 

    Google Scholar
     

  • Ma, T. Y., & Xie, S. (2021). Optimal fast charging station locations for electric ridesharing with vehicle-charging station assignment. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2020.102682

    Article 

    Google Scholar
     

  • Mendoza, J., Guéret, C., Hoskins, M., Lobit, H., Pillac, V., Vidal, T., & Vigo, D. (2014). VRP-REP: the vehicle routing problem repository. Retrieved December 9, 2021, from http://www.vrp-rep.org/

  • Zhang, H., Sheppard, C. J. R., Lipman, T. E., & Moura, S. J. (2020). Joint fleet sizing and charging system planning for autonomous electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4725–4738. https://doi.org/10.1109/TITS.2019.2946152

    Article 

    Google Scholar
     

  • Ziad, C., Rajamani, H. S., & Manikas, I. (2019). Game-theoretic Approach to Fleet management for vehicle to grid services. In 2019 IEEE 19th International Symposium on Signal Processing and Information Technology, ISSPIT 2019. Doi: https://doi.org/10.1109/ISSPIT47144.2019.9001748.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)