Let ((Lambda ,sigma )) be a BMMS, (hslash _{0}in Lambda ), and let ({check{S}},mathcal{H} :Lambda rightarrow wp (Lambda )) be multivalued mappings on Λ. Let (hslash _{1}in {check{S}}hslash _{0}) be an element such that (sigma (hslash _{0},{check{S}}hslash _{0})=sigma (hslash _{0}, hslash _{1})). Let (hslash _{2}in mathcal{H} hslash _{1}) be such that (sigma (hslash _{1},mathcal{H} hslash _{1})=sigma (hslash _{1}, hslash _{2})). Let (hslash _{3}in {check{S}}hslash _{2}) be such that (sigma (hslash _{2},{check{S}}hslash _{2})=sigma (hslash _{2}, hslash _{3})). In this way, we get a sequence ({ mathcal{H} {check{S}}(hslash _{n})}) in Λ, where (hslash _{2n+1}in {check{S}}hslash _{2n}), (hslash _{2n+2}in mathcal{H} hslash _{2n+1}),

nN

. Also (sigma (hslash _{2n},{check{S}}hslash _{2n})=sigma (hslash _{2n}, hslash _{2n+1})), (sigma (hslash _{2n+1},mathcal{H} hslash _{2n+1})=sigma ( hslash _{2n+1},hslash _{2n+2})). Then, ({ mathcal{H} {check{S}}(hslash _{n})}) is said to be a sequence in Λ generated by (hslash _{0}). If ({check{S}}=mathcal{H} ), then we say ({ Lambda {check{S}}(hslash _{n})}) instead of ({ mathcal{H} {check{S}}(hslash _{n})}). For (e,vin Lambda ), (kappa in (0,frac{1}{2})), we define (nabla (e,y)) as

$$ nabla (e,y)= left( max begin{Bmatrix} sigma (e,y),sigma (e,{check{S}}e), sigma (y,mathcal{H}y), \ frac{sigma ^{2}(e,{check{S}}e).sigma (y,mathcal{H}y)}{1+sigma ^{2}(e,y)}end{Bmatrix} right) ^{kappa }. $$

Theorem 2.1

Let ((Lambda ,sigma )) be a complete BMMS. Suppose there exists a function (alpha :Lambda times Lambda rightarrow {}[ 0,infty )). Let (r>0), (hslash _{0}in overline{beta _{sigma _{m}}(hslash _{0},r)} subseteq Lambda ), and ({check{S}},mathcal{H}:Lambda rightarrow wp (Lambda )) be (alpha _{ast })dominated mappings on (overline{beta _{sigma _{m}}(hslash _{0},r)}). Assume that (tau >0), and there exists (kappa in (0,frac{1}{ell })) with (eta =frac{kappa }{1-kappa }), and (mathcal{F}) is a strictly increasing function satisfying:

$$ tau +mathcal{F}bigl(H_{sigma }({check{S}}e,mathcal{H}y)bigr)leq mathcal{F}bigl(nabla (e,y)bigr), $$

(2.1)

for all (e,yin overline{beta _{sigma _{m}}(hslash _{0},r)}cap {mathcal{H}{check{S}}(hslash _{n})}), (alpha (e,y)geq 1), and (H_{sigma }({check{S}}e,mathcal{H}y)>0) such that,

$$ sigma (hslash _{0},{check{S}}hslash _{0})leq r^{ frac{1-ell eta }{ell }}. $$

(2.2)

Then, ({mathcal{H}{check{S}}(hslash _{n})}) is a sequence in (overline{beta _{sigma _{m}}(hslash _{0},r)}), (alpha (hslash _{n},hslash _{n+1})geq 1) for all

nN

and ({mathcal{H}{check{S}}(hslash _{n})}rightarrow {mu}in overline{beta _{sigma _{m}}(hslash _{0},r)}). Also, if μ satisfies (2.1), (alpha (hslash _{n}, {mu})geq 1), and (alpha ({mu} ,hslash _{n})geq 1) for all integers (ngeq 0), then Š and (mathcal{H}) have a common fixed point μ in (overline{beta _{sigma _{m}}(hslash _{0},r)}).

Proof

Consider a sequence ({mathcal{H}{check{S}}(hslash _{n})} ). From (2.2), we get

$$ sigma (hslash _{0},hslash _{1})=sigma (hslash _{0},{check{S}} hslash _{0})leq r^{frac{1-ell eta }{ell }}< r. $$

It follows that,

$$ hslash _{1}in overline{beta _{sigma _{m}}(hslash _{0},r)}. $$

Let (hslash _{2},ldots ,hslash _{j}in overline{beta _{sigma _{m}}(hslash _{0},r)}) for some

jN

. If j is odd, then (j=2grave{imath}+1) for some


ı
`
N

. Since ({check{S}},mathcal{H}:Lambda rightarrow wp (Lambda )) are (alpha _{ast })-dominated mappings on (overline{beta _{sigma _{m}}(hslash _{0},r)}), so (alpha _{ast }(hslash _{2grave{imath}},{check{S}}hslash _{2grave{imath}})geq 1) and (alpha _{ast }(hslash _{2grave{imath}+1},mathcal{H}hslash _{2grave{imath}+1})geq 1). As (alpha _{ast }(hslash _{2grave{imath}},{check{S}}hslash _{2 grave{imath}})geq 1), this implies (inf {alpha (hslash _{2grave{imath} },b):bin {check{S}}hslash _{2grave{imath}}}geq 1). Also (hslash _{2grave{imath}+1}in {check{S}}hslash _{2grave{imath}}), so (alpha (hslash _{2grave{imath}},hslash _{2grave{imath}+1}) geq 1) and (hslash _{2grave{imath}+2}in mathcal{H}hslash _{2grave{imath}+1}). Now using Lemma 1.12, we have

$$begin{aligned} tau +mathcal{F}bigl(sigma (hslash _{2grave{imath}+1},hslash _{2 grave{imath}+2})bigr) leq &tau +mathcal{F}bigl(H_{sigma }({ check{S}}hslash _{2grave{imath}},mathcal{H}hslash _{2grave{imath}+1})bigr) leq mathcal{F}bigl(nabla (hslash _{2grave{imath}},hslash _{2grave{imath}+1})bigr) \ leq &mathcal{F} left( max begin{Bmatrix} sigma (hslash _{2grave{imath}},hslash _{2grave{imath}+1}), sigma (hslash _{2grave{imath}},hslash _{2grave{imath}+1}), \ sigma (hslash _{2grave{imath}+1},hslash _{2grave{imath}+2}), frac{sigma ( hslash _{2grave{imath}},hslash _{2grave{imath}+1} ) .sigma ( hslash _{2grave{imath}+1},hslash _{2grave{imath}+2} ) }{1+sigma ( hslash _{2i},hslash _{2i+1} ) }end{Bmatrix} ^{kappa } right) \ leq &mathcal{F}bigl(max bigl{ sigma (hslash _{2grave{imath}},hslash _{2grave{imath}+1}),sigma (hslash _{2grave{imath}+1},hslash _{2 grave{imath}+2})bigr} ^{kappa }bigr). end{aligned}$$

Thus,

$$ tau +mathcal{F}bigl(sigma (hslash _{2grave{imath}+1},hslash _{2 grave{imath}+2})bigr)leq mathcal{F}bigl(sigma (hslash _{2grave{imath}}, hslash _{2i+1})bigr)^{eta }, $$

for all (iin N), where (eta =frac{kappa }{1-kappa }). As

F:
R
+
R

is a strictly increasing function then

$$ sigma (hslash _{2grave{imath}+1},hslash _{2grave{imath}+2})< sigma (hslash _{2grave{imath}},hslash _{2i+1})^{eta }. $$

(2.3)

Similarly, if j is even, we have

$$ sigma (hslash _{2grave{imath}+2},hslash _{2grave{imath}+3})< sigma (hslash _{2grave{imath}+1},hslash _{2i+2})^{eta }. $$

(2.4)

Now, we have

σ(

j
,


j
+
1

)<σ

(



j

1


,


j

)

η
for all jN.

(2.5)

Therefore,

$$begin{aligned} sigma (hslash _{j},hslash _{j+1}) < &sigma ( hslash _{j-1}, hslash _{j} ) ^{eta }< sigma ( hslash _{j-2},hslash _{j-1} ) ^{eta ^{2}}< sigma ( hslash _{j-3},hslash _{j-2} ) ^{eta ^{3}} \ < &sigma ( hslash _{j-4},hslash _{j-3} ) ^{eta ^{4}}< cdot ldots cdot < sigma ( hslash _{0}, hslash _{1} ) ^{j}. end{aligned}$$

(2.6)

Now,

$$begin{aligned} sigma (hslash _{0},hslash _{j+1}) leq &sigma ( hslash _{0}, hslash _{1})^{ell }cdot sigma (hslash _{1},hslash _{2})^{ell ^{2}} cdot sigma (hslash _{2},hslash _{3})^{ell ^{3}} cdot ldots cdot sigma (hslash _{j},hslash _{j+1})^{ell ^{j+1}} \ leq &sigma (hslash _{0},hslash _{1})^{ell } cdot sigma ( hslash _{0},hslash _{1})^{eta ell ^{2}} cdot sigma (hslash _{0}, hslash _{1})^{ell ^{3}eta ^{2}} cdot sigma (hslash _{0},hslash _{1})^{ ell ^{4}eta ^{3}} \ &{}cdot sigma (hslash _{0},hslash _{1})^{ell ^{5}eta ^{4}} cdot ldots cdot sigma (hslash _{0},hslash _{1})^{ell ^{j+1}eta ^{j}} \ leq &sigma (hslash _{0},hslash _{1})^{ell (eta ^{0}+ell eta + ell ^{2}eta ^{2}+ell ^{3}eta ^{3}+cdots +ell ^{j}eta ^{j})} \ leq &sigma (hslash _{0},hslash _{1})^{ell ( frac{1}{1-ell eta })}. end{aligned}$$

Then, we have

$$ sigma (hslash _{0},hslash _{j+1})leq r^{ frac{1-l(eta )times l}{ltimes 1-l(eta )}}leq r, $$

which implies (hslash _{j+1}in overline{beta _{sigma _{m}}(hslash _{0},r)}). Hence, by induction (hslash _{n}in overline{beta _{sigma _{m}}(hslash _{0},r)}) for all

nN

. Also, (alpha (hslash _{n},hslash _{n+1})geq 1) for all

nN{0}

. Now,

σ(

n
,


n
+
1

)<σ

(


0

,


1

)


η
n

for all nN.

(2.7)

Now, for any positive integers m, n ((n>m)), we have

$$begin{aligned}& begin{aligned} sigma (hslash _{m},hslash _{n}) & leq sigma (hslash _{m}, hslash _{m+1})^{ell } cdot sigma (hslash _{m+1},hslash _{m+2})^{ ell ^{2}} cdot sigma (hslash _{m+2},hslash _{m+3})^{ell ^{3}} \ &quad {}cdot ldots cdot sigma (hslash _{n-1},hslash _{n})^{ell ^{n}} \ &leq sigma (hslash _{0},hslash _{1})^{ell eta ^{m}} cdot sigma (hslash _{0},hslash _{1})^{ell ^{2}eta ^{m+1}} cdot ldots \ &quad {}cdotsigma (hslash _{0},hslash _{1})^{ell ^{n}eta ^{n-1}} quad text{(by (2.7))} \ &leq sigma (hslash _{0},hslash _{1})^{(ell eta ^{m}+ell ^{2} eta ^{m+1}+ell ^{3}eta ^{m+2}+cdots +ell ^{n}eta ^{n-1})} \ &< sigma (hslash _{0},hslash _{1})^{(ell eta ^{m}+ell ^{2}eta ^{m+1}+ ell ^{3}eta ^{m+2}+cdots )}, end{aligned} \& sigma (hslash _{m},hslash _{n}) < sigma (hslash _{0},hslash _{1})^{(frac{ell eta ^{m}}{1-ell eta })}. end{aligned}$$

Clearly, (sigma (hslash _{m},hslash _{n})rightarrow 1) as (m,nrightarrow infty ). Hence, ({mathcal{H}{check{S}}(hslash _{n})}) is a Cauchy sequence in a complete multiplicative metric space ((overline{beta _{sigma _{m}}(hslash _{0},r)},sigma )). So, there is a ({mu} in overline{beta _{sigma _{m}}(hslash _{0},r)}) and ({mathcal{H}{check{S}}(hslash _{n})}rightarrow {mu}) such that (nrightarrow infty ). Then

$$ lim_{nrightarrow infty }sigma (hslash _{n},{ mu})=1. $$

(2.8)

Now

$$ sigma ({mu},mathcal{H}{mu})leq sigma ({mu},hslash _{2n+1})^{ell } cdot sigma (hslash _{2n+1},mathcal{H}{ mu})^{ell }. $$

So, there exists (hslash _{2n+1}in {check{S}}hslash _{2n}) and (sigma (hslash _{2n},{check{S}}hslash _{2n})=sigma (hslash _{2n}, hslash _{2n+1})). Using Lemma 1.12 and (2.1), we obtain

$$ sigma ({mu},mathcal{H}{mu})leq sigma ({mu},hslash _{2n+1})^{ell } cdot H_{sigma }({check{S}}hslash _{2n}, mathcal{H}{mu})^{ell } $$

(2.9)

By assumption, (alpha (hslash _{n},{mu})geq 1). Suppose that (sigma ({mu},mathcal{H}{mu})>0), there exists a positive integer k such that (sigma (hslash _{n},mathcal{H}{mu})>0) for all (ngeq k). For (ngeq k), we have

$$begin{aligned} sigma ({mu},mathcal{H}{mu}) < & sigma ({mu},hslash _{2n+1})^{ell }. left( max begin{Bmatrix} sigma (hslash _{2n},{ mu}),sigma (hslash _{2n},mathcal{H}{ mu}), \ sigma (hslash _{2n+1},mathcal{H}{mu}), \ frac{sigma ( hslash _{2n},hslash _{2n+1} ) .sigma ( hslash _{2n+1},mathcal{H}{mu} ) }{1+sigma ( hslash _{2n},hslash _{2n+1} ) }end{Bmatrix} ^{kappa } right) ^{ell } \ < &sigma ({mu},hslash _{2n+1})^{ell } cdot bigl(max bigl{ sigma (hslash _{2n},{ mu}),sigma (hslash _{2n+1},mathcal{H}{ mu})bigr} bigr)^{ell kappa }. end{aligned}$$

(2.10)

Taking limit (nrightarrow infty ) and inequality (2.8) from both sides of (2.9), we get (sigma ({mu},mathcal{H}{mu})<sigma ({mu},mathcal{H}{mu})^{ell kappa }) that is not true in general. Our supposition is wrong because (ell kappa <1). Hence, (sigma ({mu},mathcal{H}{mu})=1) or ({mu}in mathcal{H}{mu}). Similarly, adopting the similar way and using Lemma 1.12 and inequality (2.8), we can get (sigma ({mu},{check{S}}{mu})=1) or ({mu}in {check{S}}{mu}). So, Š and (mathcal{H}) have a common fixed point μ in (overline{beta _{sigma _{m}}(hslash _{0},r)}). Now,

$$ sigma ({mu},{mu})leq {}bigl[ sigma ({mu},{check{S}}{mu}).sigma ({check{S}}{mu},{mu}) bigr]^{ell }. $$

This implies that (sigma ({mu},{mu})=1). □

Example 2.2

Let (Lambda =R^{+}cup {0}) and the function (sigma :Lambda times Lambda rightarrow Lambda ) defined by

$$ sigma (grave{imath},j)=e^{ vert i-j vert ^{2}}quad text{for all }i,j in Lambda . $$

Define the mappings ({check{S}},mathcal{H}:Lambda times Lambda rightarrow wp ( Lambda )) by

$$ {check{S}}hslash =textstylebegin{cases} {}[ frac {hslash }{5},frac {2}{5}hslash ]&text{if }hslash in {}[ 0,15]cap Lambda, \ {}[ 2hslash ,3hslash ]&text{if }hslash in (15,infty )cap Lambda end{cases} $$

and,

$$ mathcal{H}hslash =textstylebegin{cases} {}[ frac {hslash }{7},frac {3}{7}hslash ]&text{if }hslash in {}[ 0,15]cap Lambda, \ {}[ 4hslash ,5hslash ]&text{if }hslash in (15,infty )cap Lambda .end{cases} $$

Suppose that, (hslash _{0}=1), (ell =2), (r=81), (overline{B_{sigma }(hslash _{0},r)}=[0,15]cap Lambda ). Now, (sigma (hslash _{0},{check{S}}hslash _{0})=sigma (1,{check{S}}1)=sigma (1,frac{1}{5})). So (hslash _{1}=frac{1}{5}). Now, (sigma (hslash _{1},mathcal{H}hslash _{1})=sigma (frac{1}{5}, mathcal{H}frac{1}{5})=sigma (frac{1}{5},frac{1}{35})). So (hslash _{2}=frac{1}{35}). Now, (sigma (hslash _{2},{check{S}}hslash _{2})=sigma (frac{1}{35},{check{S}}frac{1}{35})=sigma ( frac{1}{35},frac{1}{175})). So (hslash _{3}=frac{1}{175}). Continuing in this way, we have ({mathcal{H}{check{S}}(hslash _{n})}={1,frac{1}{5}, frac{1}{35}, frac{1}{175},ldots}). Moreover, taking (kappa =frac{7}{23}in (0,frac{1}{2})) and (eta =frac{7}{17}in (0,1)). From (2.2), we also have

$$ sigma (hslash _{0},{check{S}}hslash _{0})=e^{ vert 1- frac{1}{5} vert ^{2}}< 81^{frac{9}{46}}. $$

Consider the mapping (alpha :Lambda times Lambda rightarrow {}[ 0,infty )) by

$$ alpha (a,b)=left {textstylebegin{array}{@{}l@{quad}l@{}} 1&text{if }a>b \ frac{1}{2}&text{otherwise}end{array}displaystyle right }. $$

Now, if (hslash ,vin overline{beta _{sigma _{m}}(hslash _{0},r)}cap {mathcal{H}{check{S}}(hslash _{n})}) with (alpha (hslash ,v)geq 1), we have

$$begin{aligned} H_{sigma }({check{S}}hslash ,mathcal{H}v) =&max Bigl{ sup _{ain { check{S}}hslash }sigma (a,mathcal{H}v),sup_{bin mathcal{H}v} sigma ({ check{S}}hslash ,b)Bigr} \ =&max biggl{ sup_{ain Shslash }sigma biggl(a,biggl[ frac{v}{7},frac{3v}{7}biggr]biggr),sup _{bin Tv}sigma biggl(biggl[frac{hslash }{5}, frac{2hslash }{5}biggr],bbiggr) biggr} \ =&max biggl{ sigma biggl(frac{2hslash }{5},biggl[frac{v}{7}, frac{3v}{7}biggr]biggr), sigma biggl(biggl[frac{hslash }{5},frac{2hslash }{5}biggr],frac{3v}{7}biggr) biggr} \ =&max biggl{ sigma biggl(frac{2hslash }{5},frac{v}{7} biggr),sigma biggl( frac{hslash }{5},frac{3v}{7} biggr)biggr} \ =&max bigl{ e^{ vert frac{2hslash }{5}-frac{v}{7} vert ^{2}},e^{ vert frac{hslash }{5}-frac{3v}{7} vert ^{2}} bigr} \ < &max begin{pmatrix} e^{ vert hslash -v vert ^{2}},e^{ vert hslash – frac{hslash }{5} vert ^{2}},e^{ vert v-frac{v}{7} vert ^{2}}, \ frac{e^{ vert hslash -frac{hslash }{5} vert ^{2}cdot }e^{ vert v-frac{v}{7} vert ^{2}}}{1+e^{ vert hslash -frac{hslash }{5} vert ^{2}}}end{pmatrix} ^{kappa } \ < &max begin{pmatrix} sigma (hslash ,v), frac{sigma (hslash ,[frac{hslash }{5},frac{2}{5}hslash ]).sigma (v,[frac{v}{7},frac{3}{7}v])}{1+sigma (hslash ,v)}, \ sigma (hslash ,[frac{hslash }{5},frac{2}{5}hslash ]),sigma ( hslash ,[frac{v}{7},frac{3}{7}v])end{pmatrix} ^{kappa }. end{aligned}$$

Thus,

$$ H_{sigma }({check{S}}hslash ,mathcal{H}v))< bigl(nabla (hslash ,v) bigr), $$

this implies that if there is (tau in (0,frac{11}{91}]), and (mathcal{F}) is a strictly increasing function defined as (mathcal{F}(ell )=ln ell +ell ), we have

$$begin{aligned}& H_{sigma }({check{S}}hslash ,mathcal{H}v)e^{H_{sigma }({ check{S}}hslash ,mathcal{H}v)-nabla (hslash ,v)+tau } leq nabla ( hslash ,v), \& ln bigl(H_{sigma }({check{S}}hslash ,mathcal{H}v) bigr)+H_{sigma }({ check{S}}hslash ,mathcal{H}v)+tau leq ln bigl(nabla (hslash ,v)bigr)+nabla ( hslash ,v)), \& tau +mathcal{F}bigl(H_{sigma }({check{S}}hslash ,mathcal{H}v) bigr)+H_{ sigma }({check{S}}hslash ,mathcal{H}v) leq mathcal{F}bigl(nabla (hslash ,v)bigr)+ nabla (hslash ,v). end{aligned}$$

Note that, taking 17, (18in Lambda ), then (alpha (17,18)geq 1). Now, we have

$$ tau +mathcal{F}bigl(H_{sigma }({check{S}}18,mathcal{H}17) bigr)+H_{ sigma }({check{S}}18,mathcal{H}17)>mathcal{F} bigl(nabla (18,17)bigr))+nabla (18,17). $$

So, the condition (2.1) is not satisfied on Λ. Hence, Š and (mathcal{H}) are satisfied all conditions of Theorem 2.1 for all (hslash ,vin overline{beta _{sigma _{m}}(hslash _{0},r)}cap { mathcal{H}{check{S}}(hslash _{n})}) with (alpha (hslash ,v)geq 1). Hence, Š and (mathcal{H}) admit a common fixed point.

Corollary 2.3

Let ((Lambda ,sigma )) be a complete BMMS. Suppose there exists a function (alpha :Lambda times Lambda rightarrow {}[ 0,infty )). Let (r>0), (hslash _{0}in overline{beta _{sigma _{m}}(hslash _{0},r)} subseteq Lambda ), and ({check{S}},mathcal{H}:Lambda rightarrow wp (Lambda )) are (alpha _{ast })dominated multifunctions on (overline{beta _{sigma _{m}}(hslash _{0},r)}). Assume that (tau >0), and there exists (kappa in (0,frac{1}{ell })) with (eta =frac{kappa }{1-kappa }), and (mathcal{F}) be a strictly increasing function satisfying:

$$ tau +mathcal{F}bigl(sigma ({check{S}}e,mathcal{H}y)bigr)leq mathcal{F} bigl( nabla (e,y)bigr), $$

(2.11)

for all (e,yin overline{beta _{sigma _{m}}(hslash _{0},r)}cap { hslash _{n}}), (alpha (e,y)geq 1), and (sigma ({check{S}}e,mathcal{H}y)>0) such that,

$$ sigma (hslash _{0},{check{S}}hslash _{0})leq r^{ frac{1-ell eta }{ell }}. $$

Then, ({mathcal{H}{check{S}}(hslash _{n})}) is a sequence in (overline{beta _{sigma _{m}}(hslash _{0},r)}), (alpha (hslash _{n},hslash _{n+1})geq 1) for all

nN

and ({mathcal{H}{check{S}}(hslash _{n})}rightarrow {mu}in overline{beta _{sigma _{m}}(hslash _{0},r)}). Also, if μ satisfies (2.11) (alpha (hslash _{n},{mu})geq 1) and (alpha ({mu},hslash _{n})geq 1) for all naturals (ngeq 0), then Š and (mathcal{H}) admit a common fixed point μ in (overline{beta _{sigma _{m}}(hslash _{0},r)}).

Corollary 2.4

Let ((Lambda ,sigma )) be a complete BMMS. Suppose there exists a function (alpha :Lambda times Lambda rightarrow {}[ 0,infty )). Let (r>0), (hslash _{0}in overline{beta _{sigma _{m}}(hslash _{0},r)} subseteq Lambda ) and ({check{S}}:Lambda rightarrow wp (Lambda )) be a (alpha _{ast })dominated multifunction on (overline{beta _{sigma _{m}}(hslash _{0},r)}). Assume that (tau >0), and there exists (kappa in (0,frac{1}{ell })) with (eta =frac{kappa }{1-kappa }), and (mathcal{F}) be a strictly increasing function satisfying:

$$ tau +mathcal{F}bigl(H_{sigma }({check{S}}e,{check{S}}y)bigr)leq mathcal{F}bigl(nabla (e,y)bigr), $$

(2.12)

for all (e,yin overline{beta _{sigma _{m}}(hslash _{0},r)}cap { Lambda {check{S}}(hslash _{n})}), (alpha (e,y)geq 1), and (H_{sigma }({check{S}}e,mathcal{H}y)>0), such that,

$$ sigma (hslash _{0},{check{S}}hslash _{0})leq r^{ frac{1-ell eta }{ell }}. $$

Then, ({Lambda {check{S}}(hslash _{n})}) is a sequence in (overline{beta _{sigma _{m}}(hslash _{0},r)}), (alpha (hslash _{n},hslash _{n+1})geq 1) for all

nN

and ({Lambda {check{S}}(hslash _{n})}rightarrow {mu}in overline{beta _{sigma _{m}}(hslash _{0},r)}). Also, if μ satisfies (2.12), (alpha (hslash _{n},{mu})geq 1) and (alpha ({mu},hslash _{n})geq 1) for all natural (ngeq 0), then Š and (mathcal{H}) admit a fixed point μ in (overline{beta _{sigma _{m}}(hslash _{0},r)}).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Disclaimer:

This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

Click here for Source link (https://www.springeropen.com/)

Loading