• Agarwal, P. K., Karpicke, J. D., Kang, S. H., Roediger, H. L., III., & McDermott, K. B. (2008). Examining the testing effect with open-and closed-book tests. Applied Cognitive Psychology, 22 (7), 861–876.

    Article 

    Google Scholar
     

  • Akçapınar, G., Hasnine, M. N., Majumdar, R., Flanagan, B., & Ogata, H. (2019a). Developing an early-warning system for spotting at-risk students by using eBook interaction logs. Smart Learning Environments, 6 (4), 1–15.


    Google Scholar
     

  • Akçapınar, G., Hasnine, M.N., Majumdar, R., Flanagan, B., Ogata, H. (2019b). Exploring the Relationships between Students’ Engagement and Academic Performance in the Digital Textbook System. In Proceedings of the 27th International Conference on Computers in Education (ICCE2019b), (pp. 318–323).

  • Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student success. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 267–270).

  • Atoum, Y., Chen, L., Liu, A. X., Hsu, S. D., & Liu, X. (2017). Automated online exam proctoring. IEEE Transactions on Multimedia, 19 (7), 1609–1624.

    Article 

    Google Scholar
     

  • Beaudoin, M. F. (2002). Learning or lurking?: Tracking the “invisible” online student. The Internet and Higher Education, 5 (2), 147–155.

    Article 

    Google Scholar
     

  • Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting Achievement and Providing Support before STEM Majors Begin to Fail. Computers & Education, 8, 103999.

    Article 

    Google Scholar
     

  • Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G. S., Ho, A. D., & Seaton, D. T. (2013). Studying learning in the worldwide classroom research into edX’s first MOOC. Research & Practice in Assessment, 8, 13–25.


    Google Scholar
     

  • Brown, P. F., Della Pietra, V. J., Desouza, P. V., Lai, J. C., & Mercer, R. L. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18 (4), 467–480.


    Google Scholar
     

  • Bull, J. (1999). Computer-assisted assessment: Impact on higher education institutions. Educational Technology and Society, 2 (3), 123–126.


    Google Scholar
     

  • Choi, S. P., Lam, S. S., Li, K. C., & Wong, B. T. (2018). Learning analytics at low cost: At-risk student prediction with clicker data and systematic proactive interventions. Journal of Educational Technology & Society, 21 (2), 273–290.


    Google Scholar
     

  • Chui, K. T., Liu, R. W., Zhao, M., & De Pablos, P. O. (2020). Predicting students’ performance with school and family tutoring using generative adversarial network-based deep support vector machine. IEEE Access, 8, 86745–86752.

    Article 

    Google Scholar
     

  • Clow, D. (2013, April). MOOCs and the funnel of participation. In: Proceedings of the third International Conference on Learning Analytics and Knowledge (pp. 185–189).

  • Coffrin, C., Corrin, L., de Barba, P., & Kennedy, G. (2014, March). Visualizing patterns of student engagement and performance in MOOCs. In Proceedings of the fourth international conference on learning analytics and knowledge  (pp. 83–92).

  • Coghlan, S., Miller, T., & Paterson, J. (2021). Good proctor or “big brother”? Ethics of online exam supervision technologies. Philosophy & Technology, 34 (4), 1581–1606.

    Article 

    Google Scholar
     

  • Daniel, D. B., & Woody, W. D. (2013). E-textbooks at what cost? Performance and use of electronic v. print texts. Computers & Education, 62, 18–23.

    Article 

    Google Scholar
     

  • Eilertsen, T. V., & Valdermo, O. (2000). Open-Book Assessment: A Contribution to Improved Learning? Studies in Educational Evaluation, 26 (2), 91–103.

    Article 

    Google Scholar
     

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27 (8), 861–874.

    MathSciNet 
    Article 

    Google Scholar
     

  • Flanagan, B., Yin, C., Suzuki, T., Hirokawa, S. (2014). Classification of English language learner writing errors using a parallel corpus with SVM. In International Journal of Knowledge and Web Intelligence, 5 (1), (pp. 21–35).

  • Flanagan, B., Majumdar, R., Takii, K., Ocheja, P., Chen, M. A., & Ogata, H. (2020). Identifying student engagement and performance from reading behaviors in open eBook assessment. In Proceedings of the 28th International Conference on Computers in Education  (Vol. 1, pp. 235–244).

  • Flanagan, B., & Hirokawa, S. (2018). An automatic method to extract online foreign language learner writing error characteristics. International Journal of Distance Education Technologies (IJDET), 16 (4), 15–30.

    Article 

    Google Scholar
     

  • Flanagan, B., & Ogata, H. (2018). Learning analytics platform in higher education in Japan. Knowledge Management & E-Learning: an International Journal, 10 (4), 469–484.


    Google Scholar
     

  • Gabrilovich, E., & Markovitch, S. (2004). Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4. 5. In Proceedings of the twenty-first international conference on Machine learning  (p. 41).

  • Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68–84.

    Article 

    Google Scholar
     

  • Gikandi, J. W., Morrow, D., & Davis, N. E. (2011). Online formative assessment in higher education: A review of the literature. Computers & Education, 57 (4), 2333–2351.

    Article 

    Google Scholar
     

  • Goda, Y., Yamada, M., Kato, H., Matsuda, T., Saito, Y., & Miyagawa, H. (2015). Procrastination and other learning behavioral types in e-learning and their relationship with learning outcomes. Learning and Individual Differences, 37, 72–80.

    Article 

    Google Scholar
     

  • Gray, C. C., & Perkins, D. (2019). Utilizing early engagement and machine learning to predict student outcomes. Computers & Education, 131, 22–32.

    Article 

    Google Scholar
     

  • Heijne-Penninga, M., Kuks, J. B. M., Schönrock-Adema, J., Snijders, T. A. B., & Cohen-Schotanus, J. (2008). Open-book tests to complement assessment-programmes: Analysis of open and closed-book tests. Advances in Health Sciences Education, 13 (3), 263–273.

    Article 

    Google Scholar
     

  • Hu, M., & Li, H. (2017). Student engagement in online learning: A review. In 2017 International Symposium on Educational Technology (ISET)  (pp. 39–43). IEEE.

  • Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers & Education, 61, 133–145.

    Article 

    Google Scholar
     

  • Ioannidou, M. K. (1997). Testing and life-long learning: open-book and closed-book examination in a university course. Studies in Educational Evaluation, 23 (2), 131–139.

    Article 

    Google Scholar
     

  • Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: A classification perspective. Cambridge University Press.

    MATH 
    Book 

    Google Scholar
     

  • Johanns, B., Dinkens, A., & Moore, J. (2017). A systematic review comparing open-book and closed-book examinations: Evaluating effects on development of critical thinking skills. Nurse Education in Practice, 27, 89–94.

    Article 

    Google Scholar
     

  • Junco, R., & Clem, C. (2015). Predicting course outcomes with digital textbook usage data. The Internet and Higher Education, 27, 54–63.

    Article 

    Google Scholar
     

  • Koedinger, K. R., Kim, J., Jia, J. Z., McLaughlin, E. A., & Bier, N. L. (2015). Learning is not a spectator sport: Doing is better than watching for learning from a MOOC. In Proceedings of the second (2015) ACM conference on learning@ scale  (pp. 111–120).

  • Kovanović, V., Gašević, D., Dawson, S., Joksimović, S., Baker, R. S., & Hatala, M. (2015). Penetrating the black box of time-on-task estimation. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 184–193).

  • Kreyszig, E. (2009). Advanced Engineering Mathematics, 10th Edition.

  • Li, H., Flanagan, B., Konomi, S. I., & Ogata, H. (2018). Measuring behaviors and identifying indicators of self-regulation in computer-assisted language learning courses. Research and Practice in Technology Enhanced Learning, 13 (1), 19.

    Article 

    Google Scholar
     

  • Lu, O. H., Huang, A. Y., Huang, J. C., Lin, A. J., Ogata, H., & Yang, S. J. (2018). Applying learning analytics for the early prediction of Students’ academic performance in blended learning. Journal of Educational Technology & Society, 21 (2), 220–232.


    Google Scholar
     

  • Lu, O. H., Huang, J. C., Huang, A. Y., & Yang, S. J. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25 (2), 220–234.

    Article 

    Google Scholar
     

  • Marino, J. B., Banchs, R. E., Crego, J. M., de Gispert, A., Lambert, P., Fonollosa, J. A., & Costa-jussà, M. R. (2006). N-Gram-Based Machine Translation. Computational Linguistics, 32 (4), 527–549.

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Matthew, J. A. E. H., Morgan, J., & Millin, A. (2019). U.S. Patent Application No. 16/258,140.

  • Ogata, H., Oi, M., Mohri, K., Okubo, F., Shimada, A., Yamada, M., Wang, J., Hirokawa, S. (2017). Learning Analytics for E-Book-Based Educational Big Data in Higher Education. In Smart Sensors at the IoT Frontier (pp. 327–350).

  • Oi, M., Okubo, F., Shimada, A., Yin, C., Ogata, H. (2015). Analysis of preview and review patterns in undergraduates’ e-book logs, In Proceedings of the 23rd International Conference on Computers in Education, (pp. 166–171).

  • Okubo, F., Yamashita, T., Shimada, A., Ogata, H. (2017). A neural network approach for students’ performance prediction. In Proceedings of the Seventh International Learning Analytics & Knowledge Conference, (pp. 598–599).

  • Olt, M. R. (2002). Ethics and distance education: Strategies for minimizing academic dishonesty in online assessment. Online Journal of Distance Learning Administration, 5 (3), 1–7.


    Google Scholar
     

  • Palomba, C. A., & Banta, T. W. (1999). Assessment Essentials: Planning, Implementing, and Improving Assessment in Higher Education. Jossey-Bass Inc.


    Google Scholar
     

  • Rashid, T., & Asghar, H. M. (2016). Technology use, self-directed learning, student engagement and academic performance: Examining the interrelations. Computers in Human Behavior, 63, 604–612.

    Article 

    Google Scholar
     

  • Reeves, T. C. (2000). Alternative assessment approaches for online learning environments in higher education. Journal of Educational Computing Research, 23 (1), 101–111.

    MathSciNet 
    Article 

    Google Scholar
     

  • Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32–47.

    Article 

    Google Scholar
     

  • Romero, C., López, M.-I., Luna, J.-M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers & Education, 68, 458–472.

    Article 

    Google Scholar
     

  • Rowe, N. C. (2004). Cheating in online student assessment: Beyond plagiarism. Online Journal of Distance Learning Administration, 7, 2.


    Google Scholar
     

  • Tanes, Z., Arnold, K. E., King, A. S., & Remnet, M. A. (2011). Using Signals for appropriate feedback: Perceptions and practices. Computers & Education, 57 (4), 2414–2422.

    Article 

    Google Scholar
     

  • Theophilides, C., & Koutselini, M. (2000). Study behavior in the closed-book and the open-book examination: A comparative analysis. Educational Research and Evaluation, 6 (4), 379–393.

    Article 

    Google Scholar
     

  • Vapnick, V. N. (1995). The nature of statistical learning theory. Springer.

    Book 

    Google Scholar
     

  • Villagrá-Arnedo, C. J., Gallego-Durán, F. J., Llorens-Largo, F., Compañ-Rosique, P., Satorre-Cuerda, R., & Molina-Carmona, R. (2017). Improving the expressiveness of black-box models for predicting student performance. Computers in Human Behavior, 72, 621–631.

    Article 

    Google Scholar
     

  • Wan, H., Liu, K., Yu, Q., & Gao, X. (2019). Pedagogical intervention practices: Improving learning engagement based on early prediction. IEEE Transactions on Learning Technologies, 12 (2), 278–289.

    Article 

    Google Scholar
     

  • Yin, C., Okubo, F., Shimada, A., Oi, M., Hirokawa, S., Yamada, M., Kojima, K., Ogata, H. (2015). Analyzing the Features of Learning Behaviors of Students using e-Books. In Workshop proc. of International Conference on Computers in Education 2015, (pp. 617–626).

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading