Abdeldjalil, M., & Yousfi, S. (2020). Identification of sands of dune and concretes using a granular model—case of arid region. Case Studies in Construction Materials, 13, e00458. https://doi.org/10.1016/j.cscm.2020.e00458
Abrams, AD. (1918). Design of concrete mixtures. Bulletin No. 1, Structural Materials Research. Laboratory, Lewis Institute
AFNOR NF EN 197–1. (2012). Ciment – Partie 1 : Composition, spécifications et critères de conformité des ciments courants. Avril 2012
AFNOR NF EN 206 + A1 (2016). Classification index November concrete – Specification, performance, production and conformity. P 18–325, ICS: 91.080.40; 91,100.30 AFNOR Paris
Benouis, A., & Grini, A. (2011). Effect of concrete mixtures on estimation of porosity by ultrasonic velocity. In O. Güneş & Y. Akkaya (Eds.), Nondestructive testing of materials and structures, RILEM Bookseries (Vol. 6). Springer, Dordrecht, ISBN 978-94-007-0722-1. https://doi.org/10.1007/978-94-007-0723-8_44
Benouis, A., & Mehamdia, A. (2018). The use of ultrasonic pulse velocity to estimate the water permeability of concretes. MATEC Web of Conferences, 149, 01065. https://doi.org/10.1051/matecconf/201814901065
Bolomey, J. (1936). Granulation et prévision de la résistance probable des bétons, Bulletin technique de la Suisse romand, 7, No. 62, 73–78. [viewed on 2016]. https://www.shf-lhb.org/fr/articles/lhb/pdf/1936/04/lhb1936017.pdf.
Boukli, H.M.A., Ghomari, F., Khelidj, A. (2009). Compressive strengths of concrete formulated with algerian local materials. Jordan Journal of Civil Engineering, 3, 103-117. [March 29, 2019]. https://jjce.just.edu.jo/issues/paper.php?p=75.pdf.
Boukli, H. M. A., Ghomari, F., & Khelidj, A. (2014). Probabilistic modelling of compressive strength of concrete using response surface methodology and neural networks. Arabian Journal for Science and Engineering, 39(6), 4451–4460. https://doi.org/10.1007/s13369-014-1139-y
Boutiba, A., Chaid, R., Laurent, M.L., Jauberthie, R. (2014). Effect of sulfur aggregates on mechanical resistance and durability for SFRHPC with the addition of slag, MATEC Web of Conferences. 11 03005 CC BY 4.0. https://doi.org/10.1051/matecconf/20141103005
Chidiac, S. E., Moutassem, F., & Mahmoodzadeh, F. (2013). Compressive strength model for concrete. Magazine of Concrete Research., 65(9), 557–572. https://doi.org/10.1680/macr.12.00167
Chouicha, K. (2006). La dimension fractale et l’étendue granulaire comme paramètres d’identification des mélanges granulaires. Materials and Structures., 39, 665–681. https://doi.org/10.1617/s11527-006-9113-0
Dan, L., Ditao, N., Qiang, F., & Daming, L. (2020). Fractal characteristics of pore structure of hybrid basalt–polypropylene fibre-reinforced concrete. Cement and Concrete Composites., 109, 103555. https://doi.org/10.1016/j.cemconcomp.2020.103555
Derabla, R., & Benmalek, M. L. (2014). Characterization of heat-treated self-compacting concrete containing mineral admixtures at early age and in the long term. Construction and Building Materials., 66, 787–794. https://doi.org/10.1016/j.conbuildmat.2014.06.029
Di, Z., Weidong, S., Jianxin, F., Gaili, X., Jiajian, L., & Shuai, C. (2020). Research on mechanical characteristics, fractal dimension and internal structure of fiber reinforced concrete under uniaxial compression. Construction and Building Materials., 258(20), 120351. https://doi.org/10.1016/j.conbuildmat.2020.120351
Féret, R. (1892). Sur la compacité des mortiers hydrauliques. Ann. Ponts et Chaussées, Mém. Doc. Série 7,4 (2), 5–164
Guemmadi, Z., Resheidat, M., Chabil, H. and Toumi, B. (2009). [viewed on 2016] “Modeling the influence of limestone filler on concrete: a novel approach for strength and cost”, Jordan Journal of Civil Engineering, 3(2), 158–171. [viewed on 2016]. https://jjce.just.edu.jo/issues/paper.php?p=79.pdf
American Concrete Institute ACI 211.1–91 (1991). Standard practice for selecting proportions for normal, heavyweight and mass concrete. Farmington Hills Michigan
De Larrard, F. (2000). Structures granulaires et formulation des bétons. LCPC Nantes.
Lecomte, A., & Thomas, A. (1992). Caractère fractal des mélanges granulaires pour bétons de haute compacité. Materials and Structures, 25(5), 255–264. https://doi.org/10.1007/BF02472666
Mehamdia A., Benouis A. (2018). Influence of the size and frequency of contact transducers on the determination of concrete permeability by ultrasonic velocity and attenuation. Journal of Materials and Environmental Sciences, 9(3), pp 730–740.
Mennaai, A. (2008). Contribution à l’étude rhéologique d’un béton à hautes performances (BHP) local. Université de Skikda.
Moutassem, F., & Chidiac, S. E. (2016). Assessment of concrete compressive strength prediction models. KSCE Journal of Civil Engineering, 20(1), 343–358. https://doi.org/10.1007/s12205-015-0722-4
Peng, Z., Zhen, G., Yan, S., Yuqiang, L., & Jiazheng, L. (2020). Effect of large broken stone content on properties of roller compacted concrete based on fractal theory. Construction and Building Materials, 30, 120821. https://doi.org/10.1016/j.conbuildmat.2020.120821
Qing, L., Qingli, Q., Jun, Z., Jiyang, W., & Qiang, Z. (2019). Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Construction and Building Materials, 228(20), 116986. https://doi.org/10.1016/j.conbuildmat.2019.116986
Rezaie, A., Mauron, A. J. P., & Beyer, K. (2020). Sensitivity analysis of fractal dimensions of crack maps on concrete and masonry walls. Automation in Construction, 117, 103258. https://doi.org/10.1016/j.autcon.2020.103258
Rouibi, M., & Chouicha, K. (2021). Porosity assessment of granular mixtures intended for concrete using the fractal model of particle-size distribution. Construction and Building Materials, 293, 123492. https://doi.org/10.1016/j.conbuildmat.2021.123492
Saadani, S. (2000). Comportement des bétons à base de granulats recyclent. Université de Constantine.
Sebsadji, S. K., & Chouicha, K. (2012). Determining periodic representative volumes of concrete mixtures based on the fractal analysis. International Journal of Solids and Structures, 49, 2941–2950. https://doi.org/10.1016/j.ijsolstr.2012.05.017
Turcotte, D.L. (1997). Fractales et chaos en géologie et géophysique. University Press, Cambridge. ISBN-13 978 0521567336. https://doi.org/10.1017/CBO9781139174695
Xuang, Y., & Mingzhi, W. (2021). Fractal dimension analysis of aggregate packing process: A numerical case study on concrete simulation. Construction and Building Materials, 270(8), 121376. https://doi.org/10.1016/j.conbuildmat.2020.121376
Yves Petit, J., Wirquin, E., & Helnan-Moussa, B. (2011). Effect of W/C and superplasticizer type on rheological parameters of SCC repair mortar for gravitational or light pressure injection. Cement and Concrete Composites, 33, 1050–1056. https://doi.org/10.1016/j.cemconcomp.2011.07.002
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)