• Abdeldjalil, M., & Yousfi, S. (2020). Identification of sands of dune and concretes using a granular model—case of arid region. Case Studies in Construction Materials, 13, e00458. https://doi.org/10.1016/j.cscm.2020.e00458

    Article 

    Google Scholar
     

  • Abrams, AD. (1918). Design of concrete mixtures. Bulletin No. 1, Structural Materials Research. Laboratory, Lewis Institute

  • AFNOR NF EN 197–1. (2012). Ciment – Partie 1 : Composition, spécifications et critères de conformité des ciments courants. Avril 2012

  • AFNOR NF EN 206 + A1 (2016). Classification index November concrete – Specification, performance, production and conformity. P 18–325, ICS: 91.080.40; 91,100.30 AFNOR Paris

  • Benouis, A., & Grini, A. (2011). Effect of concrete mixtures on estimation of porosity by ultrasonic velocity. In O. Güneş & Y. Akkaya (Eds.), Nondestructive testing of materials and structures, RILEM Bookseries (Vol. 6). Springer, Dordrecht, ISBN 978-94-007-0722-1. https://doi.org/10.1007/978-94-007-0723-8_44

    Chapter 

    Google Scholar
     

  • Benouis, A., & Mehamdia, A. (2018). The use of ultrasonic pulse velocity to estimate the water permeability of concretes. MATEC Web of Conferences, 149, 01065. https://doi.org/10.1051/matecconf/201814901065

    Article 

    Google Scholar
     

  • Bolomey, J. (1936). Granulation et prévision de la résistance probable des bétons, Bulletin technique de la Suisse romand, 7, No. 62, 73–78. [viewed on 2016]. https://www.shf-lhb.org/fr/articles/lhb/pdf/1936/04/lhb1936017.pdf.

  • Boukli, H.M.A., Ghomari, F., Khelidj, A. (2009). Compressive strengths of concrete formulated with algerian local materials. Jordan Journal of Civil Engineering, 3, 103-117. [March 29, 2019]. https://jjce.just.edu.jo/issues/paper.php?p=75.pdf.

  • Boukli, H. M. A., Ghomari, F., & Khelidj, A. (2014). Probabilistic modelling of compressive strength of concrete using response surface methodology and neural networks. Arabian Journal for Science and Engineering, 39(6), 4451–4460. https://doi.org/10.1007/s13369-014-1139-y

    Article 

    Google Scholar
     

  • Boutiba, A., Chaid, R., Laurent, M.L., Jauberthie, R. (2014). Effect of sulfur aggregates on mechanical resistance and durability for SFRHPC with the addition of slag, MATEC Web of Conferences. 11 03005 CC BY 4.0. https://doi.org/10.1051/matecconf/20141103005

  • Chidiac, S. E., Moutassem, F., & Mahmoodzadeh, F. (2013). Compressive strength model for concrete. Magazine of Concrete Research., 65(9), 557–572. https://doi.org/10.1680/macr.12.00167

    Article 

    Google Scholar
     

  • Chouicha, K. (2006). La dimension fractale et l’étendue granulaire comme paramètres d’identification des mélanges granulaires. Materials and Structures., 39, 665–681. https://doi.org/10.1617/s11527-006-9113-0

    Article 

    Google Scholar
     

  • Dan, L., Ditao, N., Qiang, F., & Daming, L. (2020). Fractal characteristics of pore structure of hybrid basalt–polypropylene fibre-reinforced concrete. Cement and Concrete Composites., 109, 103555. https://doi.org/10.1016/j.cemconcomp.2020.103555

    Article 

    Google Scholar
     

  • Derabla, R., & Benmalek, M. L. (2014). Characterization of heat-treated self-compacting concrete containing mineral admixtures at early age and in the long term. Construction and Building Materials., 66, 787–794. https://doi.org/10.1016/j.conbuildmat.2014.06.029

    Article 

    Google Scholar
     

  • Di, Z., Weidong, S., Jianxin, F., Gaili, X., Jiajian, L., & Shuai, C. (2020). Research on mechanical characteristics, fractal dimension and internal structure of fiber reinforced concrete under uniaxial compression. Construction and Building Materials., 258(20), 120351. https://doi.org/10.1016/j.conbuildmat.2020.120351

    Article 

    Google Scholar
     

  • Féret, R. (1892). Sur la compacité des mortiers hydrauliques. Ann. Ponts et Chaussées, Mém. Doc. Série 7,4 (2), 5–164

  • Guemmadi, Z., Resheidat, M., Chabil, H. and Toumi, B. (2009). [viewed on 2016] “Modeling the influence of limestone filler on concrete: a novel approach for strength and cost”, Jordan Journal of Civil Engineering, 3(2), 158–171. [viewed on 2016]. https://jjce.just.edu.jo/issues/paper.php?p=79.pdf

  • American Concrete Institute ACI 211.1–91 (1991). Standard practice for selecting proportions for normal, heavyweight and mass concrete. Farmington Hills Michigan

  • De Larrard, F. (2000). Structures granulaires et formulation des bétons. LCPC Nantes.


    Google Scholar
     

  • Lecomte, A., & Thomas, A. (1992). Caractère fractal des mélanges granulaires pour bétons de haute compacité. Materials and Structures, 25(5), 255–264. https://doi.org/10.1007/BF02472666

    Article 

    Google Scholar
     

  • Mehamdia A., Benouis A. (2018). Influence of the size and frequency of contact transducers on the determination of concrete permeability by ultrasonic velocity and attenuation. Journal of Materials and Environmental Sciences, 9(3), pp 730–740.

  • Mennaai, A. (2008). Contribution à l’étude rhéologique d’un béton à hautes performances (BHP) local. Université de Skikda.


    Google Scholar
     

  • Moutassem, F., & Chidiac, S. E. (2016). Assessment of concrete compressive strength prediction models. KSCE Journal of Civil Engineering, 20(1), 343–358. https://doi.org/10.1007/s12205-015-0722-4

    Article 

    Google Scholar
     

  • Peng, Z., Zhen, G., Yan, S., Yuqiang, L., & Jiazheng, L. (2020). Effect of large broken stone content on properties of roller compacted concrete based on fractal theory. Construction and Building Materials, 30, 120821. https://doi.org/10.1016/j.conbuildmat.2020.120821

    Article 

    Google Scholar
     

  • Qing, L., Qingli, Q., Jun, Z., Jiyang, W., & Qiang, Z. (2019). Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Construction and Building Materials, 228(20), 116986. https://doi.org/10.1016/j.conbuildmat.2019.116986

    Article 

    Google Scholar
     

  • Rezaie, A., Mauron, A. J. P., & Beyer, K. (2020). Sensitivity analysis of fractal dimensions of crack maps on concrete and masonry walls. Automation in Construction, 117, 103258. https://doi.org/10.1016/j.autcon.2020.103258

    Article 

    Google Scholar
     

  • Rouibi, M., & Chouicha, K. (2021). Porosity assessment of granular mixtures intended for concrete using the fractal model of particle-size distribution. Construction and Building Materials, 293, 123492. https://doi.org/10.1016/j.conbuildmat.2021.123492

    Article 

    Google Scholar
     

  • Saadani, S. (2000). Comportement des bétons à base de granulats recyclent. Université de Constantine.


    Google Scholar
     

  • Sebsadji, S. K., & Chouicha, K. (2012). Determining periodic representative volumes of concrete mixtures based on the fractal analysis. International Journal of Solids and Structures, 49, 2941–2950. https://doi.org/10.1016/j.ijsolstr.2012.05.017

    Article 

    Google Scholar
     

  • Turcotte, D.L. (1997). Fractales et chaos en géologie et géophysique. University Press, Cambridge. ISBN-13 978 0521567336. https://doi.org/10.1017/CBO9781139174695

  • Xuang, Y., & Mingzhi, W. (2021). Fractal dimension analysis of aggregate packing process: A numerical case study on concrete simulation. Construction and Building Materials, 270(8), 121376. https://doi.org/10.1016/j.conbuildmat.2020.121376

    Article 

    Google Scholar
     

  • Yves Petit, J., Wirquin, E., & Helnan-Moussa, B. (2011). Effect of W/C and superplasticizer type on rheological parameters of SCC repair mortar for gravitational or light pressure injection. Cement and Concrete Composites, 33, 1050–1056. https://doi.org/10.1016/j.cemconcomp.2011.07.002

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading