• Stewart WM. Sulfur – The 4th Major Nutrient. Plant Nutrition Today. International Plant Nutrition Institute (IPNI); 2010.

  • Lucheta AR, Lambais MR. Sulfur in agriculture. 2012;36(5):1369–79.

    CAS 

    Google Scholar
     

  • Semida WM, Emara AE, Barakat MA. Improving quality attributes of tomato during cold storage by preharvest foliar application of calcium chloride and potassium thiosulfate. Int Lett Nat Sci. 2019;76:98–110. https://doi.org/10.18052/www.scipress.com/ILNS.76.98.

    Article 

    Google Scholar
     

  • Fuentes-Lara LO, Medrano-Macias J, Perez-Labrada F, Rivas-Martinez EN, Garcia-Enciso EL, Gonzalez-Morales S, et al. From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants. Molecules. 2019. https://doi.org/10.3390/molecules24122282.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee A, Boswell CC, Watkinson JH. Effect of particle size on the oxidation of elemental sulphur, thiobacilli numbers, soil sulphate, and its availability to pasture. N Z J Agric Res. 2011;31(2):179–86. https://doi.org/10.1080/00288233.1988.10417943.

    Article 

    Google Scholar
     

  • Riley NG, Zhao FJ, McGrath SP. Leaching losses of sulphur from different forms of sulphur fertilizers: a field lysimeter study. Soil Use Manage. 2002;18(2):120–6. https://doi.org/10.1079/sum2002115.

    Article 

    Google Scholar
     

  • Degryse F, Baird R, Andelkovic I, McLaughlin MJ. Long-term fate of fertilizer sulfate- and elemental S in co-granulated fertilizers. Nutr Cycl Agroecosyst. 2021;120(1):31–48. https://doi.org/10.1007/s10705-021-10137-6.

    CAS 
    Article 

    Google Scholar
     

  • Germida JJ, Janzen HH. Factors affecting the oxidation of elemental sulfur in soils. Fertilizer Res. 1993;35(1–2):101–14. https://doi.org/10.1007/bf00750224.

    CAS 
    Article 

    Google Scholar
     

  • Tourna M, Maclean P, Condron L, O’Callaghan M, Wakelin SA. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol Ecol. 2014;88(3):538–49. https://doi.org/10.1111/1574-6941.12323.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Massalimov I, Medvedev UA, Zaynitdinova RM, Mufazalova NA, Mustafin AG. Assessment of antifungal activity of micronized and nanosized elemental sulfur. Nanotechnol Nanosci. 2012;3(1):55–8.


    Google Scholar
     

  • Williams JS, Cooper RM. The oldest fungicide and newest phytoalexin – a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol. 2004;53(3):263–79. https://doi.org/10.1111/j.0032-0862.2004.01010.x.

    CAS 
    Article 

    Google Scholar
     

  • Aqueous SR, Sols S. Aqueous Sulfur Sols. Elemental Sulfur Sulfur-Rich Compounds. 2003;I(230):153–66. https://doi.org/10.1007/b12113.

    CAS 
    Article 

    Google Scholar
     

  • Watkinson JH, Blair GJ. Modelling the oxidation of elemental sulfur in soils. Fert Res. 1993;35:115–26.

    CAS 
    Article 

    Google Scholar
     

  • Chapman SJ. Oxidation of micronized elemental sulphur in soil. Plant Soil. 1989;116(1):69–76. https://doi.org/10.1007/bf02327258.

    CAS 
    Article 

    Google Scholar
     

  • Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S, et al. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep. 2015;5:16205. https://doi.org/10.1038/srep16205.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almutairi KF, Machado RMA, Bryla DR, Strik BC. Chemigation with Micronized Sulfur Rapidly Reduces Soil pH in a New Planting of Northern Highbush Blueberry. HortScience. 2017;52(10):1413–8. https://doi.org/10.21273/hortsci12313-17.

    CAS 
    Article 

    Google Scholar
     

  • Hu ZY, Beaton JD, Cao ZH, Henderson A. Sulfate formation and extraction from Red soil treated with micronized elemental sulfur fertilizer and incubated in closed and open systems. Commun Soil Sci Plant Anal. 2007;33(11–12):1779–97. https://doi.org/10.1081/css-120004822.

    Article 

    Google Scholar
     

  • Matamwa W, Blair G, Guppy C, Yunusa I. Plant availability of sulfur added to finished fertilizers. Commun Soil Sci Plant Anal. 2018;49(4):433–43. https://doi.org/10.1080/00103624.2018.1430236.

    CAS 
    Article 

    Google Scholar
     

  • Soltanaeva A, Suleimenov B, Saparov G, Vassilina H. Effect of sulfur-containing fertilizers on the chemical properties of soil and winter wheat yield. Bulg J Agric Sci. 2018;24(4):586–91.


    Google Scholar
     

  • Gadino AN, Walton VM, Dreves AJ. Impact of vineyard pesticides on a beneficial arthropod, Typhlodromus pyri (Acari: Phytoseiidae), in laboratory bioassays. J Econ Entomol. 2011;104(3):970–7. https://doi.org/10.1603/ec10330.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hegedüs M, Baláž P, Baláž M, Siffalovic P, Daneu N, Kaňuchová M, et al. Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a “micro-nano” route. J Mater Sci. 2018;53(19):13617–30. https://doi.org/10.1007/s10853-018-2228-1.

    CAS 
    Article 

    Google Scholar
     

  • Lonkar SP, Pillai VV, Alhassan SM. Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Sci Rep. 2018;8(1):13401. https://doi.org/10.1038/s41598-018-31539-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raghavan N, Thangavel S, Sivalingam Y, Venugopal G. Investigation of photocatalytic performances of sulfur based reduced graphene oxide-TiO2 nanohybrids. Appl Surf Sci. 2018;449:712–8. https://doi.org/10.1016/j.apsusc.2018.01.043.

    CAS 
    Article 

    Google Scholar
     

  • Bilal M, Rasheed T, Mehmood S, Tang H, Ferreira LFR, Bharagava RN, et al. Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials – A review. Chemosphere. 2020;253: 126770. https://doi.org/10.1016/j.chemosphere.2020.126770.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rasheed T, Rizwan K, Bilal M, Sher F, Iqbal HMN. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices-a review. Chemosphere. 2021;282: 131056. https://doi.org/10.1016/j.chemosphere.2021.131056.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Du J, Hu X, Zhou Q. Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Adv. 2015;5(34):27009–17. https://doi.org/10.1039/c5ra01045d.

    CAS 
    Article 

    Google Scholar
     

  • Forstner C, Orton TG, Skarshewski A, Wang P, Kopittke PM, Dennis PG. Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Sci Total Environ. 2019;671:140–8. https://doi.org/10.1016/j.scitotenv.2019.03.360.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine. 2012;7:5901–14. https://doi.org/10.2147/IJN.S37397.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung H, Kim MJ, Ko K, Kim JH, Kwon HA, Hong I, et al. Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci Total Environ. 2015;514:307–13. https://doi.org/10.1016/j.scitotenv.2015.01.077.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xie J, Ming Z, Li H, Yang H, Yu B, Wu R, et al. Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium. Chemosphere. 2016;151:324–31. https://doi.org/10.1016/j.chemosphere.2016.02.097.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ge Y, Priester JH, Mortimer M, Chang CH, Ji Z, Schimel JP, et al. Long-Term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil. Environ Sci Technol. 2016;50(7):3965–74. https://doi.org/10.1021/acs.est.5b05620.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang D, Wang G, Zhang G, Xu X, Yang F. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresour Technol. 2013;131:527–30. https://doi.org/10.1016/j.biortech.2013.01.099.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ren W, Ren G, Teng Y, Li Z, Li L. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. J Hazard Mater. 2015;297:286–94. https://doi.org/10.1016/j.jhazmat.2015.05.017.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Juarez-Maldonado A, Ortega-Ortiz H, Morales-Diaz AB, Gonzalez-Morales S, Morelos-Moreno A, Fuente M, et al. Nanoparticles and Nanomaterials as Plant Biostimulants. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20010162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV. Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon. 2015;81:607–19. https://doi.org/10.1016/j.carbon.2014.09.095.

    CAS 
    Article 

    Google Scholar
     

  • Yap PL, Kabiri S, Auyoong YL, Tran DNH, Losic D. Tuning the multifunctional surface chemistry of reduced graphene oxide via combined elemental doping and chemical modifications. ACS Omega. 2019;4(22):19787–98. https://doi.org/10.1021/acsomega.9b02642.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq. 2015;208:122–9. https://doi.org/10.1016/j.molliq.2015.04.032.

    CAS 
    Article 

    Google Scholar
     

  • Liu G, Li L, Xu D, Huang X, Xu X, Zheng S, et al. Metal-organic framework preparation using magnetic graphene oxide-beta-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr Polym. 2017;175:584–91. https://doi.org/10.1016/j.carbpol.2017.06.074.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Teng Y, Zhou Q, Gao P. Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit Rev Environ Sci Technol. 2019;49(24):2314–58. https://doi.org/10.1080/10643389.2019.1609856.

    CAS 
    Article 

    Google Scholar
     

  • Jeon C, Solis KL, An HR, Hong Y, Igalavithana AD, Ok YS. Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar. J Hazard Mater. 2020;388: 122048. https://doi.org/10.1016/j.jhazmat.2020.122048.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem Eng J. 2019;366:608–21. https://doi.org/10.1016/j.cej.2019.02.119.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Đurović A, Stojanović Z, Bytešníková Z, Kravić S, Švec P, Přibyl J, et al. Reduced graphene oxide/ZnO nanocomposite modified electrode for the detection of tetracycline. J Mater Sci. 2022;57(9):5533–51. https://doi.org/10.1007/s10853-022-06926-1.

    CAS 
    Article 

    Google Scholar
     

  • Necas D, Klapetek P. Gwyddion. 2.51. Czech Metrology Institute, Brno; 2022. p. open-source software for SPM data analysis. Accesses date 13 Jul 2022..

  • ISO 10390:2005. Soil quality – Determination of pH. Geneva, Switzerland: International Organization for Standardization; 2005.

  • Casida LE, Klein DA, Santoro T. Soil Dehydrogenase Activity. Soil Sci. 1964;98(6):371–6. https://doi.org/10.1097/00010694-196412000-00004.

    CAS 
    Article 

    Google Scholar
     

  • Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol. 2003;69(6):3593–9. https://doi.org/10.1128/AEM.69.6.3593-3599.2003.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ISO 20130:2018. Soil quality—Measurement of enzyme activity patterns in soil samples using colorimetric substrates in micro-well plates. Geneva: International Organization for Standardization; 2018.

  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

  • Karaca H. Buffering Effect of Elemental Sulfur on Mycorrhizal Infection of Leek. J Plant Nutr. 2012;35(5):678–87. https://doi.org/10.1080/01904167.2012.653073.

    CAS 
    Article 

    Google Scholar
     

  • Santos LFM, Lapaz AM, Tomaz RS, Lira MVS, Moreira A, Reis AR, et al. Evaluation of sulfur source and dose on the nutritional state and production of piatã forage. Semin-Cienc Agrar. 2019;40(3):1237. https://doi.org/10.5433/1679-0359.2019v40n3p1237.

    CAS 
    Article 

    Google Scholar
     

  • Pias O, Tiecher T, Cherubin M, Mazurana M, Bayer C. Crop Yield Responses to Sulfur Fertilization in Brazilian No-Till Soils: a Systematic Review. Rev Bras Ciênc Solo. 2019. https://doi.org/10.1590/18069657rbcs20180078.

    Article 

    Google Scholar
     

  • Maskova T, Herben T. Root:shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol Evol. 2018;8(14):7143–50. https://doi.org/10.1002/ece3.4238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tilman D. The Resource-Ratio Hypothesis of Plant Succession. Am Nat. 1985;125(6):827–52. https://doi.org/10.1086/284382.

    Article 

    Google Scholar
     

  • Jin M, Liu J, Wu W, Zhou Q, Fu L, Zare N, et al. Relationship between graphene and pedosphere: A scientometric analysis. Chemosphere. 2022;300: 134599. https://doi.org/10.1016/j.chemosphere.2022.134599.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Cao H, Wang H, Zhao J, Gao K, Qiao J, et al. The Effects of Graphene-Family Nanomaterials on Plant Growth: A Review. Nanomaterials (Basel). 2022;12:6. https://doi.org/10.3390/nano12060936.

    CAS 
    Article 

    Google Scholar
     

  • Tabak M, Lisowska A, Filipek-Mazur B. Bioavailability of sulfur from waste obtained during biogas desulfurization and the effect of sulfur on soil acidity and biological activity. Processes. 2020;8(7):863. https://doi.org/10.3390/pr8070863.

    CAS 
    Article 

    Google Scholar
     

  • Malik KM, Khan KS, Billah M, Akhtar MS, Rukh S, Alam S, et al. Organic amendments and elemental sulfur stimulate microbial biomass and sulfur oxidation in alkaline subtropical soils. Agronomy-Basel. 2021;11(12):2514. https://doi.org/10.3390/agronomy11122514.

    CAS 
    Article 

    Google Scholar
     

  • Kurmanbayeva M, Sekerova T, Tileubayeva Z, Kaiyrbekov T, Kusmangazinov A, Shapalov S, et al. Influence of new sulfur-containing fertilizers on performance of wheat yield. Saudi J Biol Sci. 2021;28(8):4644–55. https://doi.org/10.1016/j.sjbs.2021.04.073.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye R, McCray JM, Wright AL. Microbial response of a calcareous histosol to sulfur amendment. Soil Sci. 2011;176(9):479–86. https://doi.org/10.1097/SS.0b013e31822769e7.

    CAS 
    Article 

    Google Scholar
     

  • Kelleher BP, Flanagan PV, Hart KM, Simpson AJ, Oppenheimer SF, Murphy BT, et al. Large perturbations in CO2 flux and subsequent chemosynthesis are induced in agricultural soil by the addition of elemental sulfur. Sci Rep. 2017;7(1):4732. https://doi.org/10.1038/s41598-017-04934-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cunin R, Glansdorff N, Piérard A, Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986;50(3):314–52. https://doi.org/10.1128/mr.50.3.314-352.1986.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berndt WL, Vargas JM. Elemental sulfur lowers redox potential and produces sulfide in putting green sand. HortScience. 1992;27(11):1188–90. https://doi.org/10.21273/hortsci.27.11.1188.

    CAS 
    Article 

    Google Scholar
     

  • Navarro DA, Kah M, Losic D, Kookana RS, McLaughlin MJ. Mineralisation and release of 14C-graphene oxide (GO) in soils. Chemosphere. 2020;238: 124558. https://doi.org/10.1016/j.chemosphere.2019.124558.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gao M, Xu Y, Chang X, Dong Y, Song Z. Effects of foliar application of graphene oxide on cadmium uptake by lettuce. J Hazard Mater. 2020;398: 122859. https://doi.org/10.1016/j.jhazmat.2020.122859.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kabiri S, Degryse F, Tran DNH, da Silva RC, McLaughlin MJ, Losic D. Graphene oxide: a new carrier for slow release of plant micronutrients. ACS Appl Mater Interfaces. 2017;9(49):43325–35. https://doi.org/10.1021/acsami.7b07890.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ahmed F, Rodrigues DF. Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. J Hazard Mater. 2013;256–257:33–9. https://doi.org/10.1016/j.jhazmat.2013.03.064.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen M, Qin X, Zeng G. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature. Chemosphere. 2016;163:217–26. https://doi.org/10.1016/j.chemosphere.2016.08.031.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading