• Alexander, Martin E., and Miguel G. Cruz. 2013. Limitations on the accuracy of model predictions ofwildland fire behaviour: a state-of-the-knowledge overview. The ForestryChronicle 89: 372–383. https://doi.org/10.5558/tfc2013-067.

    Article 

    Google Scholar
     

  • Alonso-Rego, Cecilia, Stéfano. Arellano-Pérez, Juan Guerra-Hernández, Juan A. Molina-Valero, Adela Martínez-Calvo, César. Pérez-Cruzado, Fernando Castedo-Dorado, Eduardo González-Ferreiro, Juan G. Álvarez-González, and Ana D. Ruiz-González. 2021. Estimating stand andfire-related surface and canopy fuel variables in pine stands using low-densityairborne and single-scan terrestrial laser scanning data. Remote Sensing 13: 5170. https://doi.org/10.3390/rs13245170.

    Article 

    Google Scholar
     

  • Alonzo, Michael, Douglas C. Morton, Bruce D. Cook, Hans-Erik Andersen, Chad Babcock, and Robert Pattison. 2017. Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar. Environmental Research Letters 12: 065004. https://doi.org/10.1088/1748-9326/aa6ade.

    Article 

    Google Scholar
     

  • Andersen, Hans-Erik, Robert J. McGaughey, and Stephen E. Reutebuch. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment 94: 441–449. https://doi.org/10.1016/j.rse.2004.10.013.

    Article 

    Google Scholar
     

  • Arroyo, Lara A., Cristina Pascual, and José A. Manzanera. 2008. Fire models and methods to map fuel types: The role of remote sensing. Forest Ecology and Management 256: 1239–1252. https://doi.org/10.1016/j.foreco.2008.06.048.

    Article 

    Google Scholar
     

  • Bezkorovaynaya, I.N. 2005. The formation of soil invertebrate communities in the Siberian afforestation experiment. In Tree species effects on soils: implications for global change, 307–316. Dordrecht: Springer.

    Chapter 

    Google Scholar
     

  • Birk, Elaine M., and R.W. Simpson. 1980. Steady state and the continuous input model of litter accumulation and decompostion in Australian eucalypt forests. Ecology 61: 481–485. https://doi.org/10.2307/1937411.

    Article 

    Google Scholar
     

  • Breiman, Leo. 2001. Random forests. Machine Learning 45: 5–32. https://doi.org/10.1023/A:1010933404324.

    Article 

    Google Scholar
     

  • Bright, Benjamin C., Andrew T. Hudak, Arjan J.H. Meddens, Todd J. Hawbaker, Jennifer S. Briggs, and Robert E. Kennedy. 2017. Prediction of forest canopy and surface fuels from lidar and satellite time series data in a bark beetle-affected forest. Forests 8: 322. https://doi.org/10.3390/f8090322.

    Article 

    Google Scholar
     

  • Brown, James K. 1974. Handbook for inventorying downed woody material. General Technical ReportGTR-INT-16, 24. Ogden: USDA Forest Service, Intermountain Forest and Range Experiment Station.


    Google Scholar
     

  • Brown, James K., Rick D. Oberheu, and Cameron M. Johnston. 1982. Handbook for inventorying surface fuels and biomass in the Interior West. General Technical Report INT-129, 48. Ogden: USDA Forest Service, Intermountain Forest and Range Experimental Station.


    Google Scholar
     

  • Costa, Alan N., Jeane R. Souza, Karyne M. Alves, Anderson Penna-Oliveira, Geisciele Paula-Silva, Ingrid S. Becker, Kelly Marinho-Vieira, Ana L. Bonfim, Alessandra Bartimachi, and Ernane H.M. Vieira-Neto. 2020. Linking the spatiotemporal variation of litterfall to standing vegetation biomass in Brazilian savannas. Journal of Plant Ecology 13: 517–524. https://doi.org/10.1093/jpe/rtaa039.

    Article 

    Google Scholar
     

  • Countryman, Clive M. 1972. The fire environment concept, 12. Berkeley: USDA Forest Service, Pacific Southwest Forest and Range Experiment Station.


    Google Scholar
     

  • Covington, W. Wallace, Richard L. Everett, Robert Steele, Larry L. Irwin, Tom A. Daer, and Allan N.D. Auclair. 1994. Historical and anticipated changes in forest ecosystems of the inland west of the United States. Journal of Sustainable Forestry 2: 13–63. https://doi.org/10.1300/J091v02n01_02.

    Article 

    Google Scholar
     

  • Dunn, Christopher J., and John D. Bailey. 2015. Temporal fuel dynamics following high-severity firein dry mixed conifer forests of the eastern Cascades, Oregon, USA. International Journal of Wildland Fire 24 (4): 470–483. https://doi.org/10.1071/WF13139.

    Article 

    Google Scholar
     

  • Eidenshink, Jeff, Brian Schwind, Ken Brewer, Zhi-Liang. Zhu, Brad Quayle, and Stephen Howard. 2007. A project for monitoring trends in burn severity. Fire Ecology 3: 3–21. https://doi.org/10.4996/fireecology.0301003.

    Article 

    Google Scholar
     

  • Erdody, Todd L., and L. Monika Moskal. 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment 114: 725–737. https://doi.org/10.1016/j.rse.2009.11.002.

    Article 

    Google Scholar
     

  • Eskelson, Bianca N.I., and Vicente J. Monleon. 2018. Post-fire surface fuel dynamics in California forests across three burn severity classes. International Journal of Wildland Fire 27: 114–124. https://doi.org/10.1071/WF17148.

    Article 

    Google Scholar
     

  • Evans, Jeffrey S. 2021. spatialEco. R package version 1.3-6https://github.com/jeffreyevans/spatialEco.


    Google Scholar
     

  • Evans, Jeffery S., and A. Melanie Murphy. 2018. rfUtilities. R package version 2.1-3https://cran.r-project.org/package=rfUtilities.


    Google Scholar
     

  • Ewel, John J. 1976. Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. The Journal of Ecology 64: 293–308. https://doi.org/10.2307/2258696.

    CAS 
    Article 

    Google Scholar
     

  • French, Nancy H.F., Pierre Goovaerts, and Eric S. Kasischke. 2004. Uncertainty in estimating carbon emissions from boreal forest fires. Journal of Geophysical Research: Atmospheres 109 (14): 14–8. https://doi.org/10.1029/2003JD003635.

    CAS 
    Article 

    Google Scholar
     

  • Fulé, Peter Z., Thomas A. Heinlein, W. Wallace. Covington, and Margaret M. Moore. 2003a. Assessing fire regimes on Grand Canyon landscapes with fire-scar and fire-record data. International Journal of Wildland Fire 12: 129–145. https://doi.org/10.1071/WF02060.

    Article 

    Google Scholar
     

  • Fulé, Peter Z., Joseph E. Crouse, Thomas A. Heinlein, Margaret M. Moore, W. Wallace Covington, and Greg Verkamp. 2003b. Mixed-severity fire regime in a high-elevation forest of Grand Canyon, Arizona, USA. Landscape Ecology 18 (5): 465–486. https://doi.org/10.1023/A:1026012118011.

    Article 

    Google Scholar
     

  • García, Mariano, Sorin Popescu, David Riaño, Kaiguang Zhao, Amy Neuenschwander, Muge Agca, Emilio Chuvieco. 2012. Characterization of canopy fuels using ICESat/GLAS data. Remote Sensing of Environment 123: 81–89. https://doi.org/10.1016/j.rse.2012.03.018.

    Article 

    Google Scholar
     

  • Graham, Russell T., Sarah McCaffrey, and Theresa B. Jain. 2004. Science basis for changing forest structure to modify wildfire behavior and severity. General Technical Report RMRS-GTR-120, 43. USDA Forest Service, Rocky Mountain Research Station: Fort Collins.

    Book 

    Google Scholar
     

  • Hanan, Erin J., Maureen C. Kennedy, Jianning Ren, Morris C. Johnson, and Alistair MS. Smith. 2022. Missing climate feedbacks in fire models: limitations and uncertainties in fuel loadings and the role of decomposition in fine fuel accumulation. Journal of Advances in Modeling Earth Systems 14: e2021MS002818. https://doi.org/10.1029/2021MS002818

    Article 

    Google Scholar
     

  • Hawley, Christie M., E. Louise Loudermilk, Eric M. Rowell, and Scott Pokswinski. 2018. A novel approach to fuel biomass sampling for 3D fuel characterization. MethodsX 5: 1597–1604. https://doi.org/10.1016/j.mex.2018.11.006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hermosilla, Txomin, Luis A. Ruiz, Alexandra N. Kazakova, Nicholas C. Coops, and L. Monika Moskal. 2013. Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire 23: 224–233. https://doi.org/10.1071/WF13086.

    Article 

    Google Scholar
     

  • Hiers, J. Kevin, Joseph J. O’Brien, R.J. Mitchell, John M. Grego, and E. Louise Loudermilk. 2009. The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests. International Journal of Wildland Fire 18: 315–325. https://doi.org/10.1071/WF08084.

    Article 

    Google Scholar
     

  • Hiers, J. Kevin, Joseph J. O’Brien, J. Morgan Varner, Bret W. Butler, Matthew Dickinson, James Furman, Michael Gallagher, David Godwin, Scott L. Goodrick, Sharon M. Hood, Andrew Hudak, Leda N. Kobziar, Rodman Linn, E. Louise Loudermilk, Sarah McCaffrey, Kevin Robertson, Eric M. Rowell, Nicholas Skowronski, Adam C. Wattsand, and Kara M. Yedinak. 2020. Prescribed fire science: the case for a refinedresearch agenda. Fire Ecology 16: 11. https://doi.org/10.1186/s42408-020-0070-8.

    Article 

    Google Scholar
     

  • Hijmans, Robert J. 2021a. raster: geographic data analysis and modeling. R package version 3.4-13https://CRAN.R-project.org/package=raster.


    Google Scholar
     

  • Hijmans, Robert J. 2021b. terra: spatial data analysis. R package version 1.3-4https://CRAN.R-project.org/package=terra.


    Google Scholar
     

  • Hoe, Michael S., Christopher J. Dunn, and Hailemariam Temesgen. 2018. Multitemporal LiDAR improves estimates of fire severity in forested landscapes. International Journal of Wildland Fire 27: 581–594. https://doi.org/10.1071/WF17141.

    Article 

    Google Scholar
     

  • Hoff, Valentijn, Eric Rowell, Casey Teske, Lloyd Queen, and Tim Wallace. 2019. Assessing the relationship between forest structure and fire severity on the North Rim of the Grand Canyon. Fire 2: 10. https://doi.org/10.3390/fire2010010.

    Article 

    Google Scholar
     

  • Hu, Tianyu, Qin Ma, Yanjun Su, John J. Battles, Brandon M. Collins, Scott L. Stephens, Maggi Kelly, and Qinghua Guo. 2019. A simple and integrated approach for fire severity assessment using bi-temporal airborne LiDAR data. International Journal of Applied Earth Observation and Geoinformation 78: 25–38. https://doi.org/10.1016/j.jag.2019.01.007.

    Article 

    Google Scholar
     

  • Hudak, Andrew T., Matthew B. Dickinson, Benjamin C. Bright, Robert L. Kremens, E. Louise Loudermilk, Joseph J. O’Brien, and Roger D. Ottmar. 2015. Measurements relating fire radiative energy density and surface fuel consumption – RxCADRE 2011 and 2012. International Journal of Wildland Fire 25: 25–37. https://doi.org/10.1071/WF14159.

    Article 

    Google Scholar
     

  • Hudak, Andrew T., Benjamin C. Bright, Scott M. Pokswinski, E. Louise Loudermilk, Joseph J. O’Brien, Benjamin S. Hornsby, Carine Klauberg, and Carlos A. Silva. 2016. Mapping forest structure and composition from low density lidar for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA. Canadian Journal of Remote Sensing 42: 411–427. https://doi.org/10.1080/07038992.2016.1217482.

    Article 

    Google Scholar
     

  • Hudak, Andrew T., Akira Kato, Benjamin C. Bright, E. Louise Loudermilk, Christie Hawley, Joseph C. Restaino, Roger D. Ottmar, Gabriel A. Prata, Carlos Cabo, Susan J. Prichard, Eric M. Rowell, and David R. Weise. 2020. Towards spatially explicit quantification of pre- and postfire fuels and fuel consumption from traditional and point cloud measurements. Forest Science 66: 428–442. https://doi.org/10.1093/forsci/fxz085.

    Article 

    Google Scholar
     

  • Isenburg, Martin. 2021. LAStools – efficient LiDAR processing software (version 200216, academic)http://rapidlasso.com/LAStools.


    Google Scholar
     

  • Jakubowski, Marek K., Qinghua Guo, Brandon Collins, Scott Stephens, and Maggi Kelly. 2013. Predicting surface fuel models and fuel metrics using Lidar and CIR imagery in a dense, mountainous forest. Photogrammetric Engineering & Remote Sensing 79: 37–49. https://doi.org/10.14358/PERS.79.1.37.

    Article 

    Google Scholar
     

  • Keane, Robert E. 2015. Wildland fuel fundamentals and applications, 202. New York: Springer.


    Google Scholar
     

  • Keane, Robert E., Scott A. Mincemoyer, Kirsten M. Schmidt, Donald G. Long, and Janice L. Garner. 2000. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico. General Technical Report RMRS-GTR-46, 126. Ogden: USDA Forest Service, Rocky Mountain Research Station.

    Book 

    Google Scholar
     

  • Keane, Robert E., Robert Burgan, and Jan van Wagtendonk. 2001. Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire 10: 301–319. https://doi.org/10.1071/WF01028.

    Article 

    Google Scholar
     

  • Key, Carl H., and Nathan C. Benson. 2006. Landscape assessment (LA). In FIREMON: fire effects monitoring and inventory system. Gen. Tech. Rep. RMRS-GTR-164-CD, ed. Duncan C. Lutes, Robert E. Keane, John F. Caratti, Carl H. Key, Benson Nathan C, Steve Sutherland, and Larry J. Gangi, LA-1-55 164. Fort Collins: USDA Forest Service, Rocky Mountain Research Station.


    Google Scholar
     

  • Krishna, M.P., and Mahesh Mohan. 2017. Litter decomposition in forest ecosystems: a review. Energy Ecology and Environment 2: 236–249. https://doi.org/10.1007/s40974-017-0064-9.

    Article 

    Google Scholar
     

  • LANDFIRE. 2014. Existing vegetation type layer, LANDFIRE 1.4.0. U.S. Department of the Interior, Geological Survey, and U.S. Department of Agriculture. http://landfire.cr.usgs.gov/viewer/. Accessed Sept 2021.

  • LANDFIRE. 2016. Existing vegetation type layer, LANDFIRE 2.0.0. U.S. Department of the Interior, Geological Survey, and U.S. Department of Agriculture. http://landfire.cr.usgs.gov/viewer/. Accessed Sept 2021.

  • Leenhouts, Bill. 1998. Assessment of biomass burning in the conterminous United States. Conservation Ecology 2. https://www.ecologyandsociety.org/vol2/iss1/art1/inline.html.

  • Leite, Rodrigo Vieira, Carlos Alberto Silva, Eben North Broadbent, Cibele Hummel do Amaral, Veraldo Liesenberg, Danilo Roberti Alves. de Almeida, Midhun Mohan, Sérgio. Godinho, Adrian Cardil, Caio Hamamura, Bruno Lopes de Faria, Pedro H.S. Brancalion, André Hirsch, Gustavo Eduardo Marcatti, Ana Paula Dalla. Corte, Angelica Maria Almeyda. Zambrano, Máira Beatriz Teixeira. da Costa, Eraldo Aparecido Trondoli. Matricardi, Anne Laura da Silva, Lucas Ruggeri Ré Y. Goya, Ruben Valbuena, Bruno Araujo Furtado. de Mendonça, Celso H.L. Silva Junior, Luiz E.O.C. Aragão, Mariano García, Jingjing Liang, Trina Merrick, Andrew T. Hudak, Jingfeng Xiao, Steven Hancock, Laura Duncason, Matheus Pinheiro Ferreira, Denis Valle, Sassan Saatchi, and Carine Klauberg. 2022. Large scale multi-layer fuel loadcharacterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment 268: 112764. https://doi.org/10.1016/j.rse.2021.112764

    Article 

    Google Scholar
     

  • Liaw, Andy, and Matthew Wiener. 2002. Classification and regression by randomForest. R News 2: 18–22.


    Google Scholar
     

  • Lin, Chinsu, Siao-En. Ma, Li-Ping. Huang, Chung-I. Chen, Pei-Ting. Lin, Zhih-Kai. Yang, and Kuan-Ting. Lin. 2021. Generating a baseline map of surface fuel loading using stratified random sampling inventory data through cokriging and multiple linear regression methods. Remote Sensing 13: 1561. https://doi.org/10.3390/rs13081561.

    Article 

    Google Scholar
     

  • López-Senespleda, Eduardo, Rafael Calama, and Ricardo Ruiz-Peinado. 2021. Estimating forest floor carbon stocks in woodland formations in Spain. Science of The Total Environment 788: 147734. https://doi.org/10.1016/j.scitotenv.2021.147734.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Loudermilk, E. Louise, J. Kevin Hiers, Joseph J. O’Brien, Robert J. Mitchell, Abhinav Singhania, Juan C. Fernandez, Wendell P. Cropper Jr., and K. Clint. Slatton. 2009. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbedcharacteristics. International Journal of Wildland Fire 18: 676–685. https://doi.org/10.1071/WF07138.

    Article 

    Google Scholar
     

  • Lutes, Duncan. 2021. FuelCalc User’s Guide (version 1.7)https://www.firelab.org/project/fuelcalc.


    Google Scholar
     

  • Lydersen, Jamie M., Brandon M. Collins, Eric E. Knapp, Gary B. Roller, and Scott Stephens. 2015. Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest. International Journal of Wildland Fire 24: 484–494. https://doi.org/10.1071/WF13066.

    Article 

    Google Scholar
     

  • Mauro, Francisco, Andrew T. Hudak, Patrick A. Fekety, Bryce Frank, Hailemariam Temesgen, David M. Bell, Matthew J. Gregory, and T.R. McCarley. 2021. Regional modeling of forest fuels and structural attributes using airborne laser scanning data in Oregon. Remote Sensing 13: 261. https://doi.org/10.3390/rs13020261.

    Article 

    Google Scholar
     

  • McCarley, T Ryan, Andrew T. Hudak, Aaron M. Sparks, Nicole M. Vaillant, Arjan JH. Meddens, Laura Trader, Francisco Mauro, Jason Kreitler, and Luigi Boschetti. 2020. Estimating wildfire fuel consumption with multitemporal airborne laser scanning data and demonstrating linkage with MODIS-derived fire radiative energy. Remote Sensing of Environment 251: 112114. https://doi.org/10.1016/j.rse.2020.112114.

    Article 

    Google Scholar
     

  • McCune, Bruce, and Dylan Keon. 2002. Equations for potential annual direct incident radiation and heat load index. Journal of Vegetation Science 13: 603–606. https://doi.org/10.1111/j.1654-1103.2002.tb02087.x.

    Article 

    Google Scholar
     

  • Murphy, Melanie A., Jeffrey S. Evans, and Andrew Storfer. 2010. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91: 252–261. https://doi.org/10.1890/08-0879.1.

    Article 
    PubMed 

    Google Scholar
     

  • Neumann, Mathias, Liisa Ukonmaanaho, James Johnson, Sue Benham, Lars Vesterdal, Radek Novotný, Arne Verstraeten, Lars Lundin, Anne Thimonier, Panagiotis Michopoulos, and Hubert Hasenauer. 2018. Quantifying carbon and nutrient input from litterfall in European forests using field observations and modeling. Global Biogeochemical Cycles 32: 784–798. https://doi.org/10.1029/2017GB005825.

    CAS 
    Article 

    Google Scholar
     

  • Olson, Jerry S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331. https://doi.org/10.2307/1932179.

    Article 

    Google Scholar
     

  • Ottmar, Roger D., David V. Sandberg, Cynthia L. Riccardi, and Susan J. Prichard. 2007. An overview of the fuel characteristic classification system—quantifying, classifying, and creating fuelbeds for resource planning. Canadian Journal of Forest Research 37: 2383–2393. https://doi.org/10.1139/X07-077.

    Article 

    Google Scholar
     

  • Pesonen, Annukka, Matti Maltamo, Kalle Eerikäinen, and Petteri Packalèn. 2008. Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area. Forest Ecology and Management 255: 3288–3296. https://doi.org/10.1016/j.foreco.2008.02.017.

    Article 

    Google Scholar
     

  • Peterson, Birgit, Kurtis Nelson, and Bruce Wylie. 2013. Towards integration of GLAS into a national fuel mapping program. Photogrammetric Engineering & Remote Sensing 79: 175–183. https://doi.org/10.14358/PERS.79.2.175.

    Article 

    Google Scholar
     

  • Pierce, Andrew D., Calvin A. Farris, and Alan H. Taylor. 2012. Use of random forests for modeling and mapping forest canopy fuels for fire behavior analysis in Lassen Volcanic National Park, California, USA. Forest Ecology and Management 279: 77–89. https://doi.org/10.1016/j.foreco.2012.05.010.

    Article 

    Google Scholar
     

  • Prescott, Cindy E. 2002. The influence of the forest canopy on nutrient cycling. Tree Physiology 22: 1193–1200. https://doi.org/10.1093/treephys/22.15-16.1193.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Price, Owen F., and Christopher E. Gordon. 2016. The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest. Journal of Environmental Management 181: 663–673. https://doi.org/10.1016/j.jenvman.2016.08.042.

    Article 
    PubMed 

    Google Scholar
     

  • R Core Team. 2021. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/.


    Google Scholar
     

  • Reeves, Matthew C., Kevin C. Ryan, Matthew G. Rollins, and Thomas G. Thompson. 2009. Spatial fuel data products of the LANDFIRE project. International Journal of Wildland Fire 18: 250–267. https://doi.org/10.1071/WF08086.

    Article 

    Google Scholar
     

  • Reich, Robin M., John E. Lundquist, and Vanessa A. Bravo. 2004. Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. International Journal of Wildland Fire 13: 119–129. https://doi.org/10.1071/WF02049.

    Article 

    Google Scholar
     

  • Reinhardt, Elizabeth, Duncan Lutes, and Joe Scott. 2006. FuelCalc: a method for estimating fuel characteristics. In: Andrews, Patricia L. and Bret W. Butler, comps. 2006.Fuels management-how to measure success: conference proceedings. 28-30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins: USDA Forest Service, Rocky Mountain Research Station. p. 273-282.

  • Roberts, D.W., and S.V. Cooper. 1989. Concepts and techniques of vegetation mapping. Land classifications based on vegetation – applications for resource management. General Technical Report INT-257, 90–96. Ogden: USDA Forest Service.


    Google Scholar
     

  • Roccaforte, John P., Peter Z. Fulé, W. Walker Chancellor, and Daniel C. Laughlin. 2012. Woody debris and tree regeneration dynamics following severe wildfires in Arizona ponderosa pine forests. Canadian Journal of Forest Research 42: 593–604. https://doi.org/10.1139/x2012-010.

    Article 

    Google Scholar
     

  • Rollins, Matthew G. 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. International Journal of Wildland Fire 18: 235–249. https://doi.org/10.1071/WF08088.

    Article 

    Google Scholar
     

  • Rowell, Eric, E. Louise Loudermilk, Carl Seielstad, and Joseph J. O’Brien. 2016. Using simulated 3D surface fuelbeds and terrestrial laser scan data to develop inputs to fire behavior models. Canadian Journal of Remote Sensing 42: 443–459. https://doi.org/10.1080/07038992.2016.1220827.

    Article 

    Google Scholar
     

  • Rowell, Eric, E. Louise Loudermilk, Christie Hawley, Scott Pokswinski, Carl Seielstad, LLoyd Queen, Joseph J. O’Brien, Andrew T. Hudak, Scott Goodrick, and J. Kevin Hiers. 2020. Coupling terrestrial laser scanning with 3D fuel biomass sampling for advancing wildland fuels characterization. Forest Ecology and Management 462: 117945. https://doi.org/10.1016/j.foreco.2020.117945.

    Article 

    Google Scholar
     

  • Seielstad, Carl A., and Lloyd P. Queen. 2003. Using airborne laser altimetry to determine fuel models for estimating fire behavior. Journal of Forestry 101: 10–15. https://doi.org/10.1093/jof/101.4.10.

    Article 

    Google Scholar
     

  • Seiler, Wolfgang, and Paul J. Crutzen. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change 2: 207–247. https://doi.org/10.1007/BF00137988.

    CAS 
    Article 

    Google Scholar
     

  • Skowronski, N.S., K.L. Clark, M. Duveneck, and J. Hom. 2011. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment 115: 703–714. https://doi.org/10.1016/j.rse.2010.10.012.

    Article 

    Google Scholar
     

  • Skowronski, Nicholas S., Michael R. Gallagher, and Timothy A. Warner. 2020. Decomposing the interactions between fire severity and canopy fuel structure using multi-temporal, active, and passive remote sensing approaches. Fire 3: 7. https://doi.org/10.3390/fire3010007.

    Article 

    Google Scholar
     

  • Stage, Al.R. 1976. An expression of the effects of aspect, slope, and habitat type on tree growth. Forest Science 22: 457–460.


    Google Scholar
     

  • Stefanidou, Alexandra, Ioannis Z. Gitas, Lauri Korhonen, Nikos Georgopoulos, and Dimitris Stavrakoudis. 2020. Multispectral LiDAR-based estimation of surface fuel load in a dense coniferous forest. Remote Sensing 12: 3333. https://doi.org/10.3390/rs12203333.

    Article 

    Google Scholar
     

  • Stevens-Rumann, Camille S., Andrew T. Hudak, Penelope Morgan, Alex Arnold, and Eva K. Strand. 2020. Fuel dynamics following wildfire in US Northern Rockies forests. Frontiers in Forests and Global Change 3: 51. https://doi.org/10.3389/ffgc.2020.00051.

    Article 

    Google Scholar
     

  • Strobl, Carolin, Anne-Laure. Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis. 2008. Conditional variable importance for random forests. BMC Bioinformatics 9: 1–11. https://doi.org/10.1186/1471-2105-9-307.

    CAS 
    Article 

    Google Scholar
     

  • USDA Forest Service. 2014. Land and resource management plan for the Kaibab National Forest, Coconino, Yavapai, and Mojave Counties, Arizonahttps://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd517406.pdf.


    Google Scholar
     

  • USDA Forest Service. 2020. Kaibab plateau ecological restoration projects, environmental assessmenthttps://www.fs.usda.gov/nfs/11558/www/nepa/109549_FSPLT3_5314654.pdf.


    Google Scholar
     

  • USDOI National Park Service. 2010. F. Appendix: Grand Canyon National Park wildland and prescribed fire monitoring and research plan. Prep. By Windy Bunn.

  • Wang, Cheng, and Nancy F. Glenn. 2009. Estimation of fire severity using pre-and post-fire LiDAR data in sagebrush steppe rangelands. International Journal of Wildland Fire 18: 848–856. https://doi.org/10.1071/WF08173.

    Article 

    Google Scholar
     

  • Wilson, Margaret FJ., Brian O’Connell, Colin Brown, Janine C. Guinan, and Anthony J. Grehan. 2007. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Marine Geodesy 30: 3–35. https://doi.org/10.1080/01490410701295962.

    Article 

    Google Scholar
     

  • Zazali, Hilyati H., Isaac N. Towers, and Jason J. Sharples. 2020. A critical review of fuel accumulation models used in Australian fire management. International Journal of Wildland Fire 30: 42–56. https://doi.org/10.1071/WF20031.

    Article 

    Google Scholar
     

  • Zevenbergen, Lyle W., and Colin R. Thorne. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12: 47–56. https://doi.org/10.1002/esp.3290120107.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)