• Arai T, Okada T, Yamamoto Y, Ogawa K, Shirai K, Kato M (2008) Sulfur abundance of asteroid 25143 Itokawa observed by X-ray fluorescence spectrometer onboard Hayabusa. Earth Planets Space 60:21–31. https://doi.org/10.1186/BF03352758

    Article 

    Google Scholar
     

  • Betz G, Wehner GK (1983) Sputtering of multicomponent materials. Top Appl Phys. https://doi.org/10.1007/3-540-12593-0_2

    Article 

    Google Scholar
     

  • Binzel RP, Bus JS, Burbine TH, Sunshine JM (1996) Spectral properties of near-earth asteroids: evidence for sources of ordinary chondrite meteorites. Science 273:946–948. https://doi.org/10.1126/science.273.5277.946

    Article 

    Google Scholar
     

  • Brunetto R, Strazzulla G (2005) Elastic collisions in ion irradiation experiments: a mechanism for space weathering of silicates. Icarus 179:265–273. https://doi.org/10.1016/j.icarus.2005.07.001

    Article 

    Google Scholar
     

  • Burgess KD, Stroud RM (2018) Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain. Geochim Cosmochim Acta 224:64–79. https://doi.org/10.1016/j.gca.2017.12.023

    Article 

    Google Scholar
     

  • Burgess KD, Stroud RM (2021) Comparison of space weathering features in three particles from Itokawa. Meteorit Planet Sci 56:1109–1124. https://doi.org/10.1111/maps.13692

    Article 

    Google Scholar
     

  • Chakraborty S, Farver JR, Yund RA, Rubie DC (1994) Mg Tracer diffusion in San Carlos olivine synthetic forsterite and as a function of P, T, and fO2. Phys Chem Miner 21:489–500

    Article 

    Google Scholar
     

  • Chapman CR (2004) Space weathering of asteroid surfaces. Annu Rev Earth Planet Sci 32:539–567. https://doi.org/10.1146/annurev.earth.32.101802.120453

    Article 

    Google Scholar
     

  • Christoffersen R, Keller LP (2011) Space radiation processing of sulfides and silicates in primitive solar systems materials: comparative insights from in situ TEM ion irradiation experiments. Meteorit Planet Sci 46:950–969. https://doi.org/10.1111/j.1945-5100.2011.01203.x

    Article 

    Google Scholar
     

  • Christoph JM, Minesinger GM, Bu CA, Elkins-Tanton LT (2022) Space weathering effects in troilite by simulated solar-wind hydrogen and helium ion irradiation. J Geophys Res Planets 127:1–18. https://doi.org/10.1029/2021JE006916

    Article 

    Google Scholar
     

  • Chuang TJ, Wandelt K (1978) Sputter profiling through Ni/Fe interfaces by Auger electron spectroscopy. IBM J Res Develop 22:277–284. https://doi.org/10.1147/rd.223.0277

    Article 

    Google Scholar
     

  • Dohmen R, Chakraborty S, Becker HW (2002) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys Res Lett 29:1–4. https://doi.org/10.1029/2002GL015480

    Article 

    Google Scholar
     

  • Dukes CA, Baragiola RA, McFadden LA (1999) Surface modification of olivine by H+ and He+ bombardment. J Geophys Res Planets 104:1865–1872. https://doi.org/10.1029/98JE02820

    Article 

    Google Scholar
     

  • Elkins-Tanton LT, Asphaug E, Bell JF, Bercovici H, Bills B, Binzel R, Bottke WF, Dibb S, Lawrence DJ, Marchi S, McCoy TJ, Oran R, Park RS, Peplowski PN, Polanskey CA, Prettyman TH, Russell CT, Shaefer L, Weiss Bp, Wieczorek MA, Williams DA, Zuber MT (2020) Observations, meteorites, and models: a preflight assessment of the composition and formation of (16) Psyche. J Geophys Res Planets 125:1–23. https://doi.org/10.1029/2019JE006296

    Article 

    Google Scholar
     

  • Fazio A, Harries D, Matthäus G, Mutschke H, Nolte S, Langenhorst F (2018) Femtosecond laser irradiation of olivine single crystals: experimental simulation of space weathering. Icarus 299:240–252. https://doi.org/10.1016/j.icarus.2017.07.025

    Article 

    Google Scholar
     

  • Gillis-Davis JJ, Ohtaki KK, Ogliore RC, Ishii HA, Bradley JP (2020) Characterization of surface fetures generated by space weathering on lunar and asteroidal regolith grains. Lunar Planet Sci 51:1155


    Google Scholar
     

  • Hamilton VE, Simon AA, Christensen PR, Reuter DC, Clark BE, Barucci MA, Bowles NE, Boynton WV, Brucato JR, Cloutis EA, Conolly HC, Donaldson Hanna KL, Emery JP, Enos HL, Fornasier S, Haberle CW, Hanna RD, Howell ES, Kaplan HH, Keller LP, Lantz C, Li J-Y, Lim LF, McCoy TJ, Merlin F, Nolan MC, Praet A, Rozitis B, Sandford SA, Schrader DL, Thomas CA, Zou X-D, Lauretta DS, OSIRIS-REx Team (2019) Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat Astron 3:332–340. https://doi.org/10.1038/s41550-019-0722-2

    Article 

    Google Scholar
     

  • Han J, Zolensky M, Martinez J, Brearley AJ, Nakamura T, Morita T, Kikuiri M, Amano K, Kagawa E, Yurimoto H, Noguchi T, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Watanabe S, Tsuda Y (2022) A FIB/TEM study of particle C0076-FO004 returned from the Asteroid Ryugu, with a focus on the structures and compositions of sulfide grains. Lunar Planet Sci 53:1838


    Google Scholar
     

  • Hapke B (2001) Space weathering from Mercury to the asteroid belt. J Geophys Res 106:10039–10073

    Article 

    Google Scholar
     

  • Hermeling J, Schmalzried H (1984) Tracerdiffusion of the Fe-cations in olivine (FexMg1-x)2SiO4 (III). Phys Chem Miner 11:161–166. https://doi.org/10.1007/BF00387846

    Article 

    Google Scholar
     

  • Keller LP, Berger EL (2014) A transmission electron microscope study of Itokawa regolith grains. Earth Planets Space 66:1–7. https://doi.org/10.1186/1880-5981-66-71

    Article 

    Google Scholar
     

  • Keller LP, McKay DS (1993) Discovery of Vapor Deposits in the Lunar Regolith. Science 261:1305–1307. https://doi.org/10.1126/science.261.5126.1305

    Article 

    Google Scholar
     

  • Keller LP, McKay DS (1997) The nature and origin of rims on lunar soil grains. Geochim Cosmochim Acta 61:2331–2341. https://doi.org/10.1016/s0016-7037(97)00085-9

    Article 

    Google Scholar
     

  • Keller LP, Wentworth SJ, McKay DS (1998) Space weathering: reflectance spectroscopy and TEM analysis of individual lunar soil grains. Lunar Planet Sci 29:1762


    Google Scholar
     

  • Keller LP, Loeffler MJ, Christoffersen R, Dukes C, Rahman Z, Baragiola R (2010) Irradiation of FeS: implications for the lifecycle of sulfur in the interstellar medium and presolar FeS grains. Lunar Planet Sci 41:1172


    Google Scholar
     

  • Keller LP, Zahman Z, Hiroi T, Sasaki S, Noble SK, Hörz F, Cintala MJ (2013) Asteroidal space weathering: the major role of FeS. Lunar Planet Sci 44:2404


    Google Scholar
     

  • Kimura M, Grossman JN, Weisberg MK (2011) Fe-Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history. Meteorit Planet Sci 46:431–442. https://doi.org/10.1111/j.1945-5100.2010.01164.x

    Article 

    Google Scholar
     

  • Kohout T, Čuda J, Filip J, Britt D, Bradley T, Tuček J, Skála R, Kletetschka G, Kašlík J, Malina O, Šišková K, Zbořil R (2014) Space weathering simulations through controlled growth of iron nanoparticles on olivine. Icarus 237:75–83. https://doi.org/10.1016/j.icarus.2014.04.004

    Article 

    Google Scholar
     

  • Laczniak DL, Thompson MS, Christoffersen R, Dukes CA, Morris RV, Keller LP (2021) Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses. Icarus 364:114479. https://doi.org/10.1016/j.icarus.2021.114479

    Article 

    Google Scholar
     

  • Laegreid N, Wehner GK (1961) Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV. J Appl Phys 32:365–369. https://doi.org/10.1063/1.1736012

    Article 

    Google Scholar
     

  • Lantz C, Brunetto R, Barucci MA, Fornasier S, Baklouti D, Bourçois J, Godard M (2017) Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids. Icarus 285:43–57. https://doi.org/10.1016/j.icarus.2016.12.019

    Article 

    Google Scholar
     

  • Legrand DL, Bancroft GM, Nesbitt HW (2005) Oxidation/alteration of pentlandite and pyrrhotite surfaces at pH 9.3: Part 1. Assignment of XPS spectra and chemical trends. Am Mineral 90:1042–1054. https://doi.org/10.2138/am.2005.1691

    Article 

    Google Scholar
     

  • Liebau F (1985) Chemical bonds in silicates. In: structural chemistry of silicates. Springer, New York

  • Loeffler MJ, Dukes CA, Chang WY, McFadden LA, Baragiola RA (2008) Laboratory simulations of sulfur depletion at Eros. Icarus 195:622–629. https://doi.org/10.1016/j.icarus.2008.02.002

    Article 

    Google Scholar
     

  • Loeffler MJ, Dukes CA, Baragiola RA (2009) Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. J Geophys Res Planets 114:1–13. https://doi.org/10.1029/2008JE003249

    Article 

    Google Scholar
     

  • Loeffler MJ, Dukes CA, Christoffersen R, Baragiola RA (2016) Space weathering of silicates simulated by successive laser irradiation: In situ reflectance measurements of Fo90, Fo99+, and SiO2. Meteorit Planet Sci 51:261–275. https://doi.org/10.1111/maps.12581

    Article 

    Google Scholar
     

  • Matsumoto T, Harries D, Langenhorst F, Miyake A, Noguchi T (2020) Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering. Nat Commun 11:1–8. https://doi.org/10.1038/s41467-020-14758-3

    Article 

    Google Scholar
     

  • Matsumoto T, Noguchi T, Tobimatsu Y, Harries D, Langenhorst F, Miyake A, Hikada H (2021) Space weathering of iron sulfides in the lunar surface environment. Geochim Cosmochim Acta 299:69–84. https://doi.org/10.1016/j.gca.2021.02.013

    Article 

    Google Scholar
     

  • Matsumoto UT, Noguchi T, Miyake A, Igami Y, Haruta M, Saito H, Seto Y, Miyahara M, Tomioka N, Yurimoto H, Nakamura T, Yabuta H, Naraoka H, Okazaki R, Sakamoto K, Tachibana S, Watanabe S (2022) Space weathering of anhydrous minerals in regolith samples from the c-type asteroid Ryugu. Lunar Planet Sci 53:1693


    Google Scholar
     

  • Nakamura T, Noguchi T, Tanaka M, Zolensky M, Kimura M, Tsuchiyama A, Nakato A, Ogami T, Ishida H, Uesugi M, Yada T, Fujimura A, Okazaki R, Sandford SA, Ishibashi Y, Abe M, Okada T, Ueno M, Mukai T, Yoshiwana M, Kawaguchi J (2011) Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113–1116. https://doi.org/10.1126/science.1207758

    Article 

    Google Scholar
     

  • Nittler LR, Starr RD, Lim L, McCoy TJ, Burbine TH, Reedy RC, Trombka JI, Gorenstein P, Squyres SW, Boynton WV, McClanahan TP, Bhangoo J, Clark PE, Murphy ME, Killen R (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteorit Planet Sci 36:1673–1695. https://doi.org/10.1111/j.1945-5100.2001.tb01856.x

    Article 

    Google Scholar
     

  • Noble SK, Hiroi T, Keller LP, Rahman Z, Sasaki S, Pieters CM (2011) Experimental space weathering of ordinary chondrites by nanopulse laser: TEM results. Lunar Planet Sci 42:1382


    Google Scholar
     

  • Noguchi T, Nakamura T, Kimura M, Zolensky ME, Tanaka M, Hashimoto T, Konno M, Nakato A, Ogami T, Fujimura A, Abe M, Yada T, Mukai T, Ueno M, Oakda T, Shirai K, Ishibashi Y, Okazaki R (2011) Incipient space weathering observed on the surface of Itokawa dust particles. Science 333:1121–1125. https://doi.org/10.1126/science.1207794

    Article 

    Google Scholar
     

  • Noguchi T, Kimura M, Hashimoto T, Konno M, Nakamura T, Zolensky ME, Okazaki R, Tanaka M, Tsuchiyama A, Nakato A, Ogami T, Ishida H, Sagae R, Tsujimoto S, Matsumoto T, Matsuno J, Fujimura A, Abe M, Yada T, Mukai T, Ueno M, Okada T, Shirai K, Ishibashi Y (2014a) Space weathered rims found on the surfaces of the Itokawa dust particles. Meteorit Planet Sci 49:188–214. https://doi.org/10.1111/maps.12111

    Article 

    Google Scholar
     

  • Noguchi T, Bridges JC, Hicks LJ, Gurman SJ, Kimura M, Hashimoto T, Konno M, Bradley JP, Okazaki R, Uesugi M, Yada T, Karouji Y, Abe M, Okada T, Mitsunari T, Nakamura T, Kagi H (2014b) Mineralogy of four Itokawa particles collected from the first touchdown site. Earth Planets Space 66:1–10. https://doi.org/10.1186/1880-5981-66-124

    Article 

    Google Scholar
     

  • Pieters C, Noble SK (2016) Space weathering on airless bodies. J Geophys Res Planets 121:1865–1884. https://doi.org/10.1002/2016JE005128

    Article 

    Google Scholar
     

  • Prince BS, Magnuson MP, Chaves LC, Thompson MS, Loeffler MJ (2020) Space weathering of FeS induced via pulsed laser irradiation. J Geophys Res Planets 125:e006242. https://doi.org/10.1029/2019JE006242

    Article 

    Google Scholar
     

  • Rajamani V, Prewitt CT (1975) Thermal Expansion of the Pentlandite Structure. Am Mineral 60:39–48


    Google Scholar
     

  • Reed TB (1971) Free energy of formation of binary compounds: and atlas of charts for high-temperature chemical calculations. MIT Press, New York


    Google Scholar
     

  • Rosenberg D, Wehner GK (1962) Sputtering Yields for Low Energy He+-, Kr+-, and Xe+-ion bombardment. J Appl Phys 33:1842–1845. https://doi.org/10.1063/1.1728843

    Article 

    Google Scholar
     

  • Sasaki S, Nakamura K, Hamabe Y, Kurahashi E, Hiroi T (2001) Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410:555–557

    Article 

    Google Scholar
     

  • Schrader DL, Zega TJ (2019) Petrographic and compositional indicators of formation and alteration conditions from LL chondrite sulfides. Geochim Cosmochim Acta 264:165–179. https://doi.org/10.1016/j.gca.2019.08.015

    Article 

    Google Scholar
     

  • Schrader DL, Davidson J, McCoy TJ (2016) Widespread evidence for high-temperature formation of pentlandite in chondrites. Geochim Cosmochim Acta 189:359–376. https://doi.org/10.1016/j.gca.2016.06.012

    Article 

    Google Scholar
     

  • Schrader DL, Davidson J, McCoy TJ, Zega TJ, Russell SS, Domanik KJ, King AJ (2021) The Fe/S ratio of pyrrhotite group sulfides in chondrites: An indicator of oxidation and implications for return samples from asteroids Ryugu and Bennu. Geochim Cosmochim Acta 303:66–91. https://doi.org/10.1016/j.gca.2021.03.019

    Article 

    Google Scholar
     

  • Thompson MS, Christoffersen R, Zega TJ, Keller LP (2014) Microchemical and structural evidence for space weathering in soils from asteroid Itokawa. Earth Planets Space 66:1–10. https://doi.org/10.1186/1880-5981-66-89

    Article 

    Google Scholar
     

  • Thompson MS, Zega TJ, Becerra P, Keane JT, Byrne S (2016) The oxidation state of nanophase Fe particles in lunar soil: Implications for space weathering. Meteorit Planet Sci 51:1082–1095. https://doi.org/10.1111/maps.12646

    Article 

    Google Scholar
     

  • Thompson MS, Loeffler MJ, Morris RV, Keller LP, Christoffersen R (2019) Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite. Icarus 319:499–511. https://doi.org/10.1016/j.icarus.2018.09.022

    Article 

    Google Scholar
     

  • Viennet JC, Roskosz M, Beck P, Alp EE, Lavina B, Hu MY, Zhao J, Nakamura T, Amano K, Kikuri M, Morita T, Kawaga E, Yurimoto H, Noguchi T, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Watanabe S, Tsuda Y (2022) Iron valence state and mineralogy of grains from asteroid Ryugu. Lunar Planet Sci 53:1834


    Google Scholar
     

  • Wang LM, Eby RK, Janeczek EJ, Ewing RC (1991) In situ TEM study of ion-beam-induced amorphization of complex silicate structures. Nucl Inst Methods Phys Res B 59–60:395–400. https://doi.org/10.1016/0168-583X(91)95245-9

    Article 

    Google Scholar
     

  • Wang Z, Hiraga T, Kohlstedt DL (2004) Effect of H+ on Fe-Mg interdiffusion in olivine, (Fe, Mg)2SiO4. Appl Phys Lett 85:209–211. https://doi.org/10.1063/1.1769593

    Article 

    Google Scholar
     

  • Weast RC (1985) CRC Handbook of chemistry and physics. CRC Press, New York, pp 174–184


    Google Scholar
     

  • Weisberg MK, Prinz M, Clayton RN, Mayeda TK, Sugiura N, Zashu S, Ebihara M (2001) A new metal-rich chondrite grouplet. Meteorit Planet Sci 36:401–418. https://doi.org/10.1111/j.1945-5100.2001.tb01882.x

    Article 

    Google Scholar
     

  • Williams DB, Carter CB (2009) Transmission electron microscopy, 2nd edn. Springer, New York, pp 361–362

    Book 

    Google Scholar
     

  • Yamada M, Sasaki S, Nagahara H, Fujiwara A, Hasegawa S, Yano H, Hiroi T, Ohashi H, Otake H (1999) Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples. Earth Planets Space 51:1255–1265. https://doi.org/10.1186/BF03351599

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading