Arai T, Okada T, Yamamoto Y, Ogawa K, Shirai K, Kato M (2008) Sulfur abundance of asteroid 25143 Itokawa observed by X-ray fluorescence spectrometer onboard Hayabusa. Earth Planets Space 60:21–31. https://doi.org/10.1186/BF03352758
Betz G, Wehner GK (1983) Sputtering of multicomponent materials. Top Appl Phys. https://doi.org/10.1007/3-540-12593-0_2
Binzel RP, Bus JS, Burbine TH, Sunshine JM (1996) Spectral properties of near-earth asteroids: evidence for sources of ordinary chondrite meteorites. Science 273:946–948. https://doi.org/10.1126/science.273.5277.946
Brunetto R, Strazzulla G (2005) Elastic collisions in ion irradiation experiments: a mechanism for space weathering of silicates. Icarus 179:265–273. https://doi.org/10.1016/j.icarus.2005.07.001
Burgess KD, Stroud RM (2018) Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain. Geochim Cosmochim Acta 224:64–79. https://doi.org/10.1016/j.gca.2017.12.023
Burgess KD, Stroud RM (2021) Comparison of space weathering features in three particles from Itokawa. Meteorit Planet Sci 56:1109–1124. https://doi.org/10.1111/maps.13692
Chakraborty S, Farver JR, Yund RA, Rubie DC (1994) Mg Tracer diffusion in San Carlos olivine synthetic forsterite and as a function of P, T, and fO2. Phys Chem Miner 21:489–500
Chapman CR (2004) Space weathering of asteroid surfaces. Annu Rev Earth Planet Sci 32:539–567. https://doi.org/10.1146/annurev.earth.32.101802.120453
Christoffersen R, Keller LP (2011) Space radiation processing of sulfides and silicates in primitive solar systems materials: comparative insights from in situ TEM ion irradiation experiments. Meteorit Planet Sci 46:950–969. https://doi.org/10.1111/j.1945-5100.2011.01203.x
Christoph JM, Minesinger GM, Bu CA, Elkins-Tanton LT (2022) Space weathering effects in troilite by simulated solar-wind hydrogen and helium ion irradiation. J Geophys Res Planets 127:1–18. https://doi.org/10.1029/2021JE006916
Chuang TJ, Wandelt K (1978) Sputter profiling through Ni/Fe interfaces by Auger electron spectroscopy. IBM J Res Develop 22:277–284. https://doi.org/10.1147/rd.223.0277
Dohmen R, Chakraborty S, Becker HW (2002) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys Res Lett 29:1–4. https://doi.org/10.1029/2002GL015480
Dukes CA, Baragiola RA, McFadden LA (1999) Surface modification of olivine by H+ and He+ bombardment. J Geophys Res Planets 104:1865–1872. https://doi.org/10.1029/98JE02820
Elkins-Tanton LT, Asphaug E, Bell JF, Bercovici H, Bills B, Binzel R, Bottke WF, Dibb S, Lawrence DJ, Marchi S, McCoy TJ, Oran R, Park RS, Peplowski PN, Polanskey CA, Prettyman TH, Russell CT, Shaefer L, Weiss Bp, Wieczorek MA, Williams DA, Zuber MT (2020) Observations, meteorites, and models: a preflight assessment of the composition and formation of (16) Psyche. J Geophys Res Planets 125:1–23. https://doi.org/10.1029/2019JE006296
Fazio A, Harries D, Matthäus G, Mutschke H, Nolte S, Langenhorst F (2018) Femtosecond laser irradiation of olivine single crystals: experimental simulation of space weathering. Icarus 299:240–252. https://doi.org/10.1016/j.icarus.2017.07.025
Gillis-Davis JJ, Ohtaki KK, Ogliore RC, Ishii HA, Bradley JP (2020) Characterization of surface fetures generated by space weathering on lunar and asteroidal regolith grains. Lunar Planet Sci 51:1155
Hamilton VE, Simon AA, Christensen PR, Reuter DC, Clark BE, Barucci MA, Bowles NE, Boynton WV, Brucato JR, Cloutis EA, Conolly HC, Donaldson Hanna KL, Emery JP, Enos HL, Fornasier S, Haberle CW, Hanna RD, Howell ES, Kaplan HH, Keller LP, Lantz C, Li J-Y, Lim LF, McCoy TJ, Merlin F, Nolan MC, Praet A, Rozitis B, Sandford SA, Schrader DL, Thomas CA, Zou X-D, Lauretta DS, OSIRIS-REx Team (2019) Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat Astron 3:332–340. https://doi.org/10.1038/s41550-019-0722-2
Han J, Zolensky M, Martinez J, Brearley AJ, Nakamura T, Morita T, Kikuiri M, Amano K, Kagawa E, Yurimoto H, Noguchi T, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Watanabe S, Tsuda Y (2022) A FIB/TEM study of particle C0076-FO004 returned from the Asteroid Ryugu, with a focus on the structures and compositions of sulfide grains. Lunar Planet Sci 53:1838
Hapke B (2001) Space weathering from Mercury to the asteroid belt. J Geophys Res 106:10039–10073
Hermeling J, Schmalzried H (1984) Tracerdiffusion of the Fe-cations in olivine (FexMg1-x)2SiO4 (III). Phys Chem Miner 11:161–166. https://doi.org/10.1007/BF00387846
Keller LP, Berger EL (2014) A transmission electron microscope study of Itokawa regolith grains. Earth Planets Space 66:1–7. https://doi.org/10.1186/1880-5981-66-71
Keller LP, McKay DS (1993) Discovery of Vapor Deposits in the Lunar Regolith. Science 261:1305–1307. https://doi.org/10.1126/science.261.5126.1305
Keller LP, McKay DS (1997) The nature and origin of rims on lunar soil grains. Geochim Cosmochim Acta 61:2331–2341. https://doi.org/10.1016/s0016-7037(97)00085-9
Keller LP, Wentworth SJ, McKay DS (1998) Space weathering: reflectance spectroscopy and TEM analysis of individual lunar soil grains. Lunar Planet Sci 29:1762
Keller LP, Loeffler MJ, Christoffersen R, Dukes C, Rahman Z, Baragiola R (2010) Irradiation of FeS: implications for the lifecycle of sulfur in the interstellar medium and presolar FeS grains. Lunar Planet Sci 41:1172
Keller LP, Zahman Z, Hiroi T, Sasaki S, Noble SK, Hörz F, Cintala MJ (2013) Asteroidal space weathering: the major role of FeS. Lunar Planet Sci 44:2404
Kimura M, Grossman JN, Weisberg MK (2011) Fe-Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history. Meteorit Planet Sci 46:431–442. https://doi.org/10.1111/j.1945-5100.2010.01164.x
Kohout T, Čuda J, Filip J, Britt D, Bradley T, Tuček J, Skála R, Kletetschka G, Kašlík J, Malina O, Šišková K, Zbořil R (2014) Space weathering simulations through controlled growth of iron nanoparticles on olivine. Icarus 237:75–83. https://doi.org/10.1016/j.icarus.2014.04.004
Laczniak DL, Thompson MS, Christoffersen R, Dukes CA, Morris RV, Keller LP (2021) Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses. Icarus 364:114479. https://doi.org/10.1016/j.icarus.2021.114479
Laegreid N, Wehner GK (1961) Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV. J Appl Phys 32:365–369. https://doi.org/10.1063/1.1736012
Lantz C, Brunetto R, Barucci MA, Fornasier S, Baklouti D, Bourçois J, Godard M (2017) Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids. Icarus 285:43–57. https://doi.org/10.1016/j.icarus.2016.12.019
Legrand DL, Bancroft GM, Nesbitt HW (2005) Oxidation/alteration of pentlandite and pyrrhotite surfaces at pH 9.3: Part 1. Assignment of XPS spectra and chemical trends. Am Mineral 90:1042–1054. https://doi.org/10.2138/am.2005.1691
Liebau F (1985) Chemical bonds in silicates. In: structural chemistry of silicates. Springer, New York
Loeffler MJ, Dukes CA, Chang WY, McFadden LA, Baragiola RA (2008) Laboratory simulations of sulfur depletion at Eros. Icarus 195:622–629. https://doi.org/10.1016/j.icarus.2008.02.002
Loeffler MJ, Dukes CA, Baragiola RA (2009) Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. J Geophys Res Planets 114:1–13. https://doi.org/10.1029/2008JE003249
Loeffler MJ, Dukes CA, Christoffersen R, Baragiola RA (2016) Space weathering of silicates simulated by successive laser irradiation: In situ reflectance measurements of Fo90, Fo99+, and SiO2. Meteorit Planet Sci 51:261–275. https://doi.org/10.1111/maps.12581
Matsumoto T, Harries D, Langenhorst F, Miyake A, Noguchi T (2020) Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering. Nat Commun 11:1–8. https://doi.org/10.1038/s41467-020-14758-3
Matsumoto T, Noguchi T, Tobimatsu Y, Harries D, Langenhorst F, Miyake A, Hikada H (2021) Space weathering of iron sulfides in the lunar surface environment. Geochim Cosmochim Acta 299:69–84. https://doi.org/10.1016/j.gca.2021.02.013
Matsumoto UT, Noguchi T, Miyake A, Igami Y, Haruta M, Saito H, Seto Y, Miyahara M, Tomioka N, Yurimoto H, Nakamura T, Yabuta H, Naraoka H, Okazaki R, Sakamoto K, Tachibana S, Watanabe S (2022) Space weathering of anhydrous minerals in regolith samples from the c-type asteroid Ryugu. Lunar Planet Sci 53:1693
Nakamura T, Noguchi T, Tanaka M, Zolensky M, Kimura M, Tsuchiyama A, Nakato A, Ogami T, Ishida H, Uesugi M, Yada T, Fujimura A, Okazaki R, Sandford SA, Ishibashi Y, Abe M, Okada T, Ueno M, Mukai T, Yoshiwana M, Kawaguchi J (2011) Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113–1116. https://doi.org/10.1126/science.1207758
Nittler LR, Starr RD, Lim L, McCoy TJ, Burbine TH, Reedy RC, Trombka JI, Gorenstein P, Squyres SW, Boynton WV, McClanahan TP, Bhangoo J, Clark PE, Murphy ME, Killen R (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteorit Planet Sci 36:1673–1695. https://doi.org/10.1111/j.1945-5100.2001.tb01856.x
Noble SK, Hiroi T, Keller LP, Rahman Z, Sasaki S, Pieters CM (2011) Experimental space weathering of ordinary chondrites by nanopulse laser: TEM results. Lunar Planet Sci 42:1382
Noguchi T, Nakamura T, Kimura M, Zolensky ME, Tanaka M, Hashimoto T, Konno M, Nakato A, Ogami T, Fujimura A, Abe M, Yada T, Mukai T, Ueno M, Oakda T, Shirai K, Ishibashi Y, Okazaki R (2011) Incipient space weathering observed on the surface of Itokawa dust particles. Science 333:1121–1125. https://doi.org/10.1126/science.1207794
Noguchi T, Kimura M, Hashimoto T, Konno M, Nakamura T, Zolensky ME, Okazaki R, Tanaka M, Tsuchiyama A, Nakato A, Ogami T, Ishida H, Sagae R, Tsujimoto S, Matsumoto T, Matsuno J, Fujimura A, Abe M, Yada T, Mukai T, Ueno M, Okada T, Shirai K, Ishibashi Y (2014a) Space weathered rims found on the surfaces of the Itokawa dust particles. Meteorit Planet Sci 49:188–214. https://doi.org/10.1111/maps.12111
Noguchi T, Bridges JC, Hicks LJ, Gurman SJ, Kimura M, Hashimoto T, Konno M, Bradley JP, Okazaki R, Uesugi M, Yada T, Karouji Y, Abe M, Okada T, Mitsunari T, Nakamura T, Kagi H (2014b) Mineralogy of four Itokawa particles collected from the first touchdown site. Earth Planets Space 66:1–10. https://doi.org/10.1186/1880-5981-66-124
Pieters C, Noble SK (2016) Space weathering on airless bodies. J Geophys Res Planets 121:1865–1884. https://doi.org/10.1002/2016JE005128
Prince BS, Magnuson MP, Chaves LC, Thompson MS, Loeffler MJ (2020) Space weathering of FeS induced via pulsed laser irradiation. J Geophys Res Planets 125:e006242. https://doi.org/10.1029/2019JE006242
Rajamani V, Prewitt CT (1975) Thermal Expansion of the Pentlandite Structure. Am Mineral 60:39–48
Reed TB (1971) Free energy of formation of binary compounds: and atlas of charts for high-temperature chemical calculations. MIT Press, New York
Rosenberg D, Wehner GK (1962) Sputtering Yields for Low Energy He+-, Kr+-, and Xe+-ion bombardment. J Appl Phys 33:1842–1845. https://doi.org/10.1063/1.1728843
Sasaki S, Nakamura K, Hamabe Y, Kurahashi E, Hiroi T (2001) Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410:555–557
Schrader DL, Zega TJ (2019) Petrographic and compositional indicators of formation and alteration conditions from LL chondrite sulfides. Geochim Cosmochim Acta 264:165–179. https://doi.org/10.1016/j.gca.2019.08.015
Schrader DL, Davidson J, McCoy TJ (2016) Widespread evidence for high-temperature formation of pentlandite in chondrites. Geochim Cosmochim Acta 189:359–376. https://doi.org/10.1016/j.gca.2016.06.012
Schrader DL, Davidson J, McCoy TJ, Zega TJ, Russell SS, Domanik KJ, King AJ (2021) The Fe/S ratio of pyrrhotite group sulfides in chondrites: An indicator of oxidation and implications for return samples from asteroids Ryugu and Bennu. Geochim Cosmochim Acta 303:66–91. https://doi.org/10.1016/j.gca.2021.03.019
Thompson MS, Christoffersen R, Zega TJ, Keller LP (2014) Microchemical and structural evidence for space weathering in soils from asteroid Itokawa. Earth Planets Space 66:1–10. https://doi.org/10.1186/1880-5981-66-89
Thompson MS, Zega TJ, Becerra P, Keane JT, Byrne S (2016) The oxidation state of nanophase Fe particles in lunar soil: Implications for space weathering. Meteorit Planet Sci 51:1082–1095. https://doi.org/10.1111/maps.12646
Thompson MS, Loeffler MJ, Morris RV, Keller LP, Christoffersen R (2019) Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite. Icarus 319:499–511. https://doi.org/10.1016/j.icarus.2018.09.022
Viennet JC, Roskosz M, Beck P, Alp EE, Lavina B, Hu MY, Zhao J, Nakamura T, Amano K, Kikuri M, Morita T, Kawaga E, Yurimoto H, Noguchi T, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Watanabe S, Tsuda Y (2022) Iron valence state and mineralogy of grains from asteroid Ryugu. Lunar Planet Sci 53:1834
Wang LM, Eby RK, Janeczek EJ, Ewing RC (1991) In situ TEM study of ion-beam-induced amorphization of complex silicate structures. Nucl Inst Methods Phys Res B 59–60:395–400. https://doi.org/10.1016/0168-583X(91)95245-9
Wang Z, Hiraga T, Kohlstedt DL (2004) Effect of H+ on Fe-Mg interdiffusion in olivine, (Fe, Mg)2SiO4. Appl Phys Lett 85:209–211. https://doi.org/10.1063/1.1769593
Weast RC (1985) CRC Handbook of chemistry and physics. CRC Press, New York, pp 174–184
Weisberg MK, Prinz M, Clayton RN, Mayeda TK, Sugiura N, Zashu S, Ebihara M (2001) A new metal-rich chondrite grouplet. Meteorit Planet Sci 36:401–418. https://doi.org/10.1111/j.1945-5100.2001.tb01882.x
Williams DB, Carter CB (2009) Transmission electron microscopy, 2nd edn. Springer, New York, pp 361–362
Yamada M, Sasaki S, Nagahara H, Fujiwara A, Hasegawa S, Yano H, Hiroi T, Ohashi H, Otake H (1999) Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples. Earth Planets Space 51:1255–1265. https://doi.org/10.1186/BF03351599
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)