• Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37:163–176. https://doi.org/10.3109/07388551.2015.1128876

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Anemüller S, Lübben M, Schäfer G (1985) The respiratory system of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium. FEBS Lett 193:83–87. https://doi.org/10.1016/0014-5793(85)80084-3

    Article 

    Google Scholar
     

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171. https://doi.org/10.1016/j.tim.2007.02.005

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bernander R (2007) The cell cycle of Sulfolobus. Mol Microbiol 66:557–562. https://doi.org/10.1111/j.1365-2958.2007.05917.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bernander R, Poplawski A (1997) Cell cycle characteristics of thermophilic archaea. J Bacteriol 179:4963–4969. https://doi.org/10.1128/jb.179.16.4963-4969.1997

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bischof LF, Haurat MF, Hoffmann L, Albersmeier A, Wolf J, Neu A, Pham TK, Albaum SA, Jakobi T, Schouten S, Neumann-Schaal M, Wright PC, Kalinowski J, Siebers B, Albers S-V (2019) Early Response of Sulfolobus acidocaldarius to Nutrient Limitation. Front Microbiol. https://doi.org/10.3389/fmicb.2018.03201

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv Mikrobiol 84:54–68. https://doi.org/10.1007/BF00408082

    CAS 
    Article 

    Google Scholar
     

  • Cangelosi GA, Meschke JS (2014) Dead or alive: molecular assessment of microbial viability. Appl Environ Microbiol 80:5884–5891. https://doi.org/10.1128/AEM.01763-14

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk H-P, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a Model organism of the Crenarchaeota. J Bacteriol 187:4992–4999. https://doi.org/10.1128/JB.187.14.4992-4999.2005

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz M, Herrero M, García LA, Quirós C (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48:385–407. https://doi.org/10.1016/j.bej.2009.07.013

    CAS 
    Article 

    Google Scholar
     

  • Elferink MGL, Albers S-V, Konings WN, Driessen AJM (2001) Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol Microbiol 39:1494–1503. https://doi.org/10.1046/j.1365-2958.2001.02336.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fontaniella B, Millanes A-M, Vicente C, Legaz M-E (2004) Concanavalin A binds to a mannose-containing ligand in the cell wall of some lichen phycobionts. Plant Physiol Biochem 42:773–779. https://doi.org/10.1016/j.plaphy.2004.09.003

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Forment JV, Walker RV, Jackson SP (2012) A high-throughput, flow cytometry-based method to quantify DNA-end resection in mammalian cells. Cytometry A 81A:922–928. https://doi.org/10.1002/cyto.a.22155

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Gleissner M, Kaiser U, Antonopoulos E, Schäfer G (1997) The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius. J Biol Chem 272:8417–8426. https://doi.org/10.1074/jbc.272.13.8417

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Han W, Xu Y, Feng X, Liang YX, Huang L, Shen Y, She Q (2017) NQO-induced DNA-less cell formation is associated with chromatin protein degradation and dependent on A0A1-ATPase in Sulfolobus. Front Microbiol 8:1480. https://doi.org/10.3389/fmicb.2017.01480

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hjort K, Bernander R (1999) Changes in cell size and DNA content in Sulfolobus cultures during dilution and temperature shift experiments. J Bacteriol 181:5669–5675

    CAS 
    Article 

    Google Scholar
     

  • Hohenblum H, Borth N, Mattanovich D (2003) Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J Biotechnol 102:281–290. https://doi.org/10.1016/S0168-1656(03)00049-X

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Johnson I, Spence MTZ (2010) The molecular probes handbook. Life Technologies Corporation, Carlsbad


    Google Scholar
     

  • Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 33:77–79. https://doi.org/10.1177/33.1.2578146

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kopp J, Kittler S, Slouka C, Herwig C, Spadiut O, Wurm DJ (2020) Repetitive fed-batch a promising process mode for biomanufacturing with E. Coli. Front Bioeng Biotechnol. 8:573607. https://doi.org/10.3389/fbioe.2020.573607

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight Kit for detection of extremophilic archaea and visualization of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886. https://doi.org/10.1128/AEM.70.11.6884-6886.2004

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindström EB, Sehlin HM (1989) High efficiency of plating of the thermophilic sulfur-dependent Archaebacterium Sulfolobus acidocaldarius. Appl Environ Microbiol 55:3020–3021

    Article 

    Google Scholar
     

  • Maciorowski Z, Chattopadhyay PK, Jain P (2017) Basic multicolor flow cytometry. Curr Protoc Immunol. https://doi.org/10.1002/cpim.26

    Article 
    PubMed 

    Google Scholar
     

  • Martens-Habbena W, Sass H (2006) Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Appl Environ Microbiol 72:87–95. https://doi.org/10.1128/AEM.72.1.87-95.2006

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer BH, Zolghadr B, Peyfoon E, Pabst M, Panico M, Morris HR, Haslam SM, Messner P, Schäffer C, Dell A, Albers S-V (2011) Sulfoquinovose synthase – an important enzyme in the N-glycosylation pathway of Sulfolobus acidocaldarius. Mol Microbiol 82:1150–1163. https://doi.org/10.1111/j.1365-2958.2011.07875.x

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mostböck S FCSalyzer. In: SourceForge. https://sourceforge.net/projects/fcsalyzer/. Accessed 1 Sep 2021

  • Nyström T (2001) Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch Microbiol 176:159–164. https://doi.org/10.1007/s002030100314

    Article 
    PubMed 

    Google Scholar
     

  • Peng N, Han W, Li Y, Liang Y, She Q (2017) Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. Sci China Life Sci 60:370–385. https://doi.org/10.1007/s11427-016-0355-8

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Peyfoon E, Meyer B, Hitchen PG, Panico M, Morris HR, Haslam SM, Albers S-V, Dell A (2010) The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is glycosylated at multiple sites with chitobiose-linked N-glycans. Archaea. https://doi.org/10.1155/2010/754101

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quehenberger J, Shen L, Albers S-V, Siebers B, Spadiut O (2017) Sulfolobus—a potential key organism in future biotechnology. Front Microbiol 8:2474. https://doi.org/10.3389/fmicb.2017.02474

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quehenberger J, Albersmeier A, Glatzel H, Hackl M, Kalinowski J, Spadiut O (2019) A defined cultivation medium for Sulfolobus acidocaldarius. J Biotechnol 301:56–67. https://doi.org/10.1016/j.jbiotec.2019.04.028

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rastädter K, Wurm DJ, Spadiut O, Quehenberger J (2020) The cell membrane of Sulfolobus spp.—Homeoviscous adaption and biotechnological applications. Int J Mol Sci 21:3935. https://doi.org/10.3390/ijms21113935

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Rastädter K, Wurm DJ, Spadiut O, Quehenberger J (2021) Physiological characterization of Sulfolobus acidocaldarius in a controlled bioreactor environment. Int J Environ Res Public Health 18:5532. https://doi.org/10.3390/ijerph18115532

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rieseberg M, Kasper C, Reardon KF, Scheper T (2001) Flow cytometry in biotechnology. Appl Microbiol Biotechnol 56:350–360. https://doi.org/10.1007/s002530100673

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Robinson JP (2018) Overview of flow cytometry and microbiology. Curr Protoc Cytom 84:e37. https://doi.org/10.1002/cpcy.37

    Article 
    PubMed 

    Google Scholar
     

  • Rollins DM, Colwell RR (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52:531–538

    CAS 
    Article 

    Google Scholar
     

  • Scheper T, Hitzmann B, Rinas U, Schügerl K (1987) Flow cytometry of Escherichia coli for process monitoring. J Biotechnol 5:139–148. https://doi.org/10.1016/0168-1656(87)90010-1

    CAS 
    Article 

    Google Scholar
     

  • Schocke L, Bräsen C, Siebers B (2019) Thermoacidophilic Sulfolobus species as source for extremozymes and as novel archaeal platform organisms. Curr Opin Biotechnol 59:71–77. https://doi.org/10.1016/j.copbio.2019.02.012

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vees CA, Veiter L, Sax F, Herwig C, Pflügl S (2020) A robust flow cytometry-based biomass monitoring tool enables rapid at-line characterization of S. cerevisiae physiology during continuous bioprocessing of spent sulfite liquor. Anal Bioanal Chem 412:2137–2149. https://doi.org/10.1007/s00216-020-02423-z

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers S-V (2012) Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00214

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wurm DJ, Marschall L, Sagmeister P, Herwig C, Spadiut O (2017) Simple monitoring of cell leakiness and viability in Escherichia coli bioprocesses—a case study. Eng Life Sci 17:598–604. https://doi.org/10.1002/elsc.201600204

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao X, Han Z, Chen Y, Liang X, Li H, Qian Y (2011) Optimization of FDA–PI method using flow cytometry to measure metabolic activity of the cyanobacteria, Microcystis aeruginosa. Phys Chem Earth 36:424–429. https://doi.org/10.1016/j.pce.2010.03.028

    Article 

    Google Scholar
     

  • Xiao A, Zhou X, Zhou L, Zhang Y (2006) Improvement of cell viability and hirudin production by ascorbic acid in Pichia pastoris fermentation. Appl Microbiol Biotechnol 72:837–844. https://doi.org/10.1007/s00253-006-0338-1

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MWW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol. https://doi.org/10.3389/fmicb.2015.01209

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zolghadr B, Klingl A, Koerdt A, Driessen AJM, Rachel R, Albers S-V (2010) Appendage-mediated surface adherence of Sulfolobus solfataricus. J Bacteriol 192:104–110. https://doi.org/10.1128/JB.01061-09

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading