• Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, et al. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 2018;17(1):168.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu F, Qin L, Liao Z, Song J, Yuan C, Liu Y, et al. Microenvironment characterization and multi-omics signatures related to prognosis and immunotherapy response of hepatocellular carcinoma. Exp Hematol Oncol. 2020;9:10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, et al. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 2021;14(1):98.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dunn G, Bruce A, Ikeda H, Old L, Schreiber R. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu W, Liu Y, Zeng S, Han Y, Shen H. Intratumor heterogeneity: the hidden barrier to immunotherapy against MSI tumors from the perspective of IFN-γ signaling and tumor-infiltrating lymphocytes. J Hematol Oncol. 2021;14(1):160.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baitsch L, Baumgaertner P, Devêvre E, Raghav S, Legat A, Barba L, et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Invest. 2011;121(6):2350–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wherry E. T cell exhaustion. Nat Immunol. 2011;12(6):492–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yi M, Niu M, Zhang J, Li S, Zhu S, Yan Y, et al. Combine and conquer: manganese synergizing anti-TGF-β/PD-L1 bispecific antibody YM101 to overcome immunotherapy resistance in non-inflamed cancers. J Hematol Oncol. 2021;14(1):146.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Y, Zhang Y, Cao G, Zheng X, Sun C, Wei H, et al. Blockade of checkpoint receptor PVRIG unleashes anti-tumor immunity of NK cells in murine and human solid tumors. J Hematol Oncol. 2021;14(1):100.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Swann J, Smyth M. Immune surveillance of tumors. J Clin Invest. 2007;117(5):1137–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang Z, Guo J, Weng L, Tang W, Jin S, Ma W. Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol. 2020;13(1):10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, et al. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res. 2021;9(1):72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of myeloid-derived suppressor cell in tumor immunotherapy. Biomark Res. 2021;9(1):77.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang L, He T, Liu J, Tai J, Wang B, Chen Z, et al. Pan-cancer analysis reveals tumor-associated macrophage communication in the tumor microenvironment. Exp Hematol Oncol. 2021;10(1):31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol. 2021;10(1):60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol. 2021;14(1):181.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zou L, Barnett B, Safah H, Larussa V, Evdemon-Hogan M, Mottram P, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004;64(22):8451–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001;194(6):847–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu M, Liu W, Qin Y, Xu X, Ji S. Regulation of metabolic reprogramming by tumor suppressor genes in pancreatic cancer. Exp Hematol Oncol. 2020;9(1):23.

    Article 

    Google Scholar
     

  • Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer. 2020;20(9):516–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, et al. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol. 2021;14(1):169.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lim SA, Wei J, Nguyen T-LM, Shi H, Su W, Palacios G, et al. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature. 2021;591(7849):306–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591(7851):645–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature. 2021;591(7851):652–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bluestone JA, Anderson M. Tolerance in the age of immunotherapy. N Engl J Med. 2020;383(12):1156–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gershon R, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. 1970;18(5):723–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gershon R, Kondo K. Infectious immunological tolerance. Immunology. 1971;21(6):903–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bullock W, Katz D, Benacerraf B. Induction of T-lymphocyte responses to a small molecular weight antigen. III. T-T cell interactions to determinants linked together: suppression vs. enhancement. J Exp Med. 1975;142(2):275–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Swierkosz JE, Swanborg RH. Suppressor cell control of unresponsiveness to experimental allergic encephalomyelitis. J Immunol. 1975;115(3):631–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Liew F. Regulation of delayed-type hypersensitivity. I. T suppressor cells for delayed-type hypersensitivity to sheep erythrocytes in mice. Eur J Immunol. 1977;7(10):714–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schatten S, Granstein R, Drebin J, Greene M. Suppressor T cells and the immune response to tumors. Crit Rev Immunol. 1984;4(4):335–79.

    CAS 
    PubMed 

    Google Scholar
     

  • Berendt M, North R. T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med. 1980;151(1):69–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184(2):387–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramsdell F, Ziegler S. FOXP3 and scurfy: how it all began. Nat Rev Immunol. 2014;14(5):343–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fontenot J, Gavin M, Rudensky A. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sakaguchi S, Mikami N, Wing J, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annu Rev Immunol. 2020;38:541–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abbas A, Benoist C, Bluestone J, Campbell D, Ghosh S, Hori S, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14(4):307–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nishikawa H, Koyama S. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J Immunother Cancer. 2021;9(7): e002591.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cinier J, Hubert M, Besson L, Di Roio A, Rodriguez C, Lombardi V, et al. Recruitment and expansion of tregs cells in the tumor environment-how to target them? Cancers (Basel). 2021;13(8):1850.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38(3):414–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou G, Levitsky H. Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol. 2007;178(4):2155–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmadzadeh M, Pasetto A, Jia L, Deniger D, Stevanović S, Robbins P, et al. Tumor-infiltrating human CD4 regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol. 2019;4(31):eaao4310.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin X, Chen M, Liu Y, Guo Z, He X, Brand D, et al. Advances in distinguishing natural from induced Foxp3(+) regulatory T cells. Int J Clin Exp Pathol. 2013;6(2):116–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer. 2012;75(1):95–101.

    PubMed 
    Article 

    Google Scholar
     

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother. 2009;58(3):449–59.

    PubMed 
    Article 

    Google Scholar
     

  • Sayour EJ, McLendon P, McLendon R, De Leon G, Reynolds R, Kresak J, et al. Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother. 2015;64(4):419–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang Y, Xu X, Guo S, Zhang C, Tang Y, Tian Y, et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9(3): e91551.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18(11):3022–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12(2):465–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carreras J, Lopez-Guillermo A, Fox B, Colomo L, Martinez A, Roncador G, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood. 2006;108(9):2957–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27(2):186–92.

    PubMed 
    Article 

    Google Scholar
     

  • Haas M, Dimmler A, Hohenberger W, Grabenbauer GG, Niedobitek G, Distel LV. Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. BMC Gastroenterol. 2009;9:65.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Glasner A, Plitas G. Tumor resident regulatory T cells. Semin Immunol. 2021;52: 101476.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu X, Hartman CL, Li L, Albert CJ, Si F, Gao A, et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci Transl Med. 2021;13(587):eaaz6314.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9(1):249.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shi L, Feng M, Du S, Wei X, Song H, Yixin X, et al. Adenosine generated by regulatory T cells induces CD8 T cell exhaustion in gastric cancer through A2aR pathway. Biomed Res Int. 2019;2019:4093214.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol. 2018;15(5):428–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang L, Romero P. Metabolic control of CD8 T cell fate decisions and antitumor immunity. Trends Mol Med. 2018;24(1):30–48.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 2017;18(12):1332–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhan Y, Zheng L, Liu J, Hu D, Wang J, Liu K, et al. PLA2G4A promotes right-sided colorectal cancer progression by inducing CD39+gammadelta Treg polarization. JCI Insight. 2021;6(16): e148028.

    PubMed Central 
    Article 

    Google Scholar
     

  • Mathis D, Shoelson S. Immunometabolism: an emerging frontier. Nat Rev Immunol. 2011;11(2):81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kempkes R, Joosten I, Koenen H, He X. Metabolic pathways involved in regulatory T cell functionality. Front Immunol. 2019;10:2839.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson S, et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012;486(7404):549–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Howie D, Ten Bokum A, Necula A, Cobbold S, Waldmann H. The role of lipid metabolism in T lymphocyte differentiation and survival. Front Immunol. 2017;8:1949.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Furusawa Y, Obata Y, Fukuda S, Endo T, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marrodan M, Farez M, Balbuena Aguirre M, Correale J. Obesity and the risk of multiple sclerosis. The role of leptin. Ann Clin Transl Neurol. 2021;8(2):406–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance T cell anabolic metabolism for suppression. Nat Immunol. 2016;17(12):1459–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abdullah L, Hills LB, Winter EB, Huang YH. Diverse roles of Akt in T cells. Immunometabolism. 2021;3(1): e210007.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med. 2008;205(3):565–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008;105(22):7797–802.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature. 2013;499(7459):485–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gubser P, Bantug G, Razik L, Fischer M, Dimeloe S, Hoenger G, et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol. 2013;14(10):1064–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013;18(5):726–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaha V, Young L. AMP-activated protein kinase regulation and biological actions in the heart. Circ Res. 2012;111(6):800–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duan W, Ding Y, Yu X, Ma D, Yang B, Li Y, et al. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production. Am J Transl Res. 2019;11(4):2393–402.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee S, Lee S, Yang E, Kim E, Kim J, Shin D, et al. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS ONE. 2015;10(9): e0135858.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Michalek R, Gerriets V, Jacobs S, Macintyre A, MacIver N, Mason E, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi L, Wang R, Huang G, Vogel P, Neale G, Green D, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dang E, Barbi J, Yang H, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146(5):772–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim J, Tchernyshyov I, Semenza G, Dang C. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gerriets V, Kishton R, Nichols A, Macintyre A, Inoue M, Ilkayeva O, et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest. 2015;125(1):194–207.

    PubMed 
    Article 

    Google Scholar
     

  • Macintyre A, Gerriets V, Nichols A, Michalek R, Rudolph M, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20(1):61–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Galgani M, De Rosa V, La Cava A, Matarese G. Role of metabolism in the immunobiology of regulatory T cells. J Immunol. 2016;197(7):2567–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Procaccini C, De Rosa V, Galgani M, Abanni L, Calì G, Porcellini A, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity. 2010;33(6):929–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vallion R, Divoux J, Glauzy S, Ronin E, Lombardi Y, Lubrano di Ricco M, et al. Regulatory T Cell stability and migration are dependent on mTOR. J Immunol. 2020;205(7):1799–809.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ben-Shoshan J, Maysel-Auslender S, Mor A, Keren G, George J. Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur J Immunol. 2008;38(9):2412–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clambey E, McNamee E, Westrich J, Glover L, Campbell E, Jedlicka P, et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA. 2012;109(41):E2784–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20(11):1327–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Field C, Baixauli F, Kyle R, Puleston D, Cameron A, Sanin D, et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive function. Cell Metab. 2020;31(2):422-37.e5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raud B, Roy D, Divakaruni A, Tarasenko T, Franke R, Ma E, et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 2018;28(3):504-15.e7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Divakaruni A, Hsieh W, Minarrieta L, Duong T, Kim K, Desousa B, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 2018;28(3):490-503.e7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He N, Fan W, Henriquez B, Yu R, Atkins A, Liddle C, et al. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci USA. 2017;114(47):12542–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang K, Blanco D, Neale G, Vogel P, Avila J, Clish C, et al. Homeostatic control of metabolic and functional fitness of T cells by LKB1 signalling. Nature. 2017;548(7669):602–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Timilshina M, You Z, Lacher S, Acharya S, Jiang L, Kang Y, et al. Activation of mevalonate pathway via LKB1 is essential for stability of T cells. Cell Rep. 2019;27(10):2948-61.e7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ikeda K, Kinoshita M, Kayama H, Nagamori S, Kongpracha P, Umemoto E, et al. Slc3a2 mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Rep. 2017;21(7):1824–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Procaccini C, Garavelli S, Carbone F, Di Silvestre D, La Rocca C, Greco D, et al. Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity. 2021;54(7):1543-60.e6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Long Y, Tao H, Karachi A, Grippin A, Jin L, Chang Y, et al. Dysregulation of glutamate transport enhances treg function that promotes VEGF blockade resistance in glioblastoma. Cancer Res. 2020;80(3):499–509.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klysz D, Tai X, Robert P, Craveiro M, Cretenet G, Oburoglu L, et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Correale J. Immunosuppressive amino-acid catabolizing enzymes in multiple sclerosis. Front Immunol. 2020;11: 600428.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan Y, Zhang G, Gran B, Fallarino F, Yu S, Li H, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol. 2010;185(10):5953–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Curran T, Jalili R, Farrokhi A, Ghahary A. IDO expressing fibroblasts promote the expansion of antigen specific regulatory T cells. Immunobiology. 2014;219(1):17–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi H, Chapman N, Wen J, Guy C, Long L, Dhungana Y, et al. Amino acids license kinase mTORC1 activity and Treg cell function via small G proteins Rag and Rheb. Immunity. 2019;51(6):1012-27.e7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity. 2017;47(5):875-89.e10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Finlay D, Cantrell D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann NY Acad Sci. 2010;1183:149–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dong S, Harrington BK, Hu EY, Greene JT, Lehman AM, Tran M, et al. PI3K p110delta inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest. 2019;129(1):122–36.

    PubMed 
    Article 

    Google Scholar
     

  • Gao Z, Xu X, Li Y, Sun K, Yang M, Zhang Q, et al. Mechanistic Insight into PPARgamma and Tregs in Atherosclerotic Immune Inflammation. Front Pharmacol. 2021;12: 750078.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li C, Munoz-Rojas AR, Wang G, Mann AO, Benoist C, Mathis D. PPARgamma marks splenic precursors of multiple nonlymphoid-tissue Treg compartments. Proc Natl Acad Sci USA. 2021;118(13): e2025197118.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Amersfoort J, Schaftenaar FH, Douna H, van Santbrink PJ, van Puijvelde GHM, Slutter B, et al. Diet-induced dyslipidemia induces metabolic and migratory adaptations in regulatory T cells. Cardiovasc Res. 2021;117(5):1309–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Opitz C, Litzenburger U, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He X, Koenen H, Slaats J, Joosten I. Stabilizing human regulatory T cells for tolerance inducing immunotherapy. Immunotherapy. 2017;9(9):735–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine M, et al. Foxp3 reprograms T cell metabolism to function in low-glucose. High Lact Environ Cell Metab. 2017;25(6):1282-93.e7.

    CAS 
    Article 

    Google Scholar
     

  • Miska J, Lee-Chang C, Rashidi A, Muroski M, Chang A, Lopez-Rosas A, et al. HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma. Cell Rep. 2019;27(1):226-37.e4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hsu T, Lin Y, Wang Y, Mo S, Chi P, Lai A, et al. HIF-2α is indispensable for regulatory T cell function. Nat Commun. 2020;11(1):5005.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16(2):178–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Essig K, Hu D, Guimaraes J, Alterauge D, Edelmann S, Raj T, et al. Roquin suppresses the PI3K-mTOR signaling pathway to inhibit T helper cell differentiation and conversion of Treg to Tfr cells. Immunity. 2017;47(6):1067-82.e12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma M, Shinde R, McGaha T, Huang L, Holmgaard R, Wolchok J, et al. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci Adv. 2015;1(10): e1500845.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Beier U, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, et al. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB J. 2015;29(6):2315–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sena L, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman D, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38(2):225–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu Z, Ye J, Dean JW, Bostick JW, Weinberg SE, Xiong L, et al. Requirement of mitochondrial transcription factor A in tissue-resident regulatory T Cell maintenance and function. Cell Rep. 2019;28(1):159–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martinez-Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019;565(7740):495–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, et al. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 2021;14(1):187.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu H, Tsai C, Chang L, Huang H, Cheng H, Wang J, et al. l-arginine-dependent epigenetic regulation of interleukin-10, but not transforming growth factor-β, production by neonatal regulatory T lymphocytes. Front Immunol. 2017;8:487.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kurniawan H, Franchina D, Guerra L, Bonetti L, Baguet L, Grusdat M, et al. glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 2020;31(5):920-36.e7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ducker G, Rabinowitz J. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou X, Kong N, Wang J, Fan H, Zou H, Horwitz D, et al. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol. 2010;185(5):2675–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu L, Lan Q, Li Z, Zhou X, Gu J, Li Q, et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci USA. 2014;111(33):E3432–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thangavelu G, Andrejeva G, Bolivar-Wagers S, Jin S, Zaiken MC, Loschi M, et al. Retinoic acid signaling acts as a rheostat to balance Treg function. Cell Mol Immunol. 2022;19(7):820–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang C, Qiu J, O’Sullivan D, Buck M, Noguchi T, Curtis J, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Galgani M, Bruzzaniti S, La Rocca C, Micillo T, de Candia P, Bifulco M, et al. Immunometabolism of regulatory T cells in cancer. Mol Aspects Med. 2021;77: 100936.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rao D, Verburg F, Renner K, Peeper DS, Lacroix R, Blank CU. Metabolic profiles of regulatory T cells in the tumour microenvironment. Cancer Immunol Immunother. 2021;70(9):2417–27.

    PubMed 
    Article 

    Google Scholar
     

  • Lu Y, Li Y, Liu Q, Tian N, Du P, Zhu F, et al. MondoA-thioredoxin-interacting protein axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment. Gastroenterology. 2021;161(2):575–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu R, Wu M, Liu S, Shang W, Li R, Xu J, et al. Glucose metabolism characteristics and TLR8-mediated metabolic control of CD4(+) Treg cells in ovarian cancer cells microenvironment. Cell Death Dis. 2021;12(1):22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, et al. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci USA. 2018;115(28):E6546–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li L, Liu X, Sanders KL, Edwards JL, Ye J, Si F, et al. TLR8-mediated metabolic control of human Treg function: a mechanistic target for cancer immunotherapy. Cell Metab. 2019;29(1):103–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • MaruYama T, Kobayashi S, Shibata H, Chen W, Owada Y. Curcumin analog GO-Y030 boosts the efficacy of anti-PD-1 cancer immunotherapy. Cancer Sci. 2021;112(12):4844–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kumagai S, Togashi Y, Sakai C, Kawazoe A, Kawazu M, Ueno T, et al. An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells. Immunity. 2020;53(1):187–203.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Plitas G, Konopacki C, Wu K, Bos P, Morrow M, Putintseva E, et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity. 2016;45(5):1122–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang H, Franco F, Tsui YC, Xie X, Trefny MP, Zappasodi R, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat Immunol. 2020;21(3):298–308.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cubillos-Ruiz J, Silberman P, Rutkowski M, Chopra S, Perales-Puchalt A, Song M, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161(7):1527–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mougiakakos D, Johansson C, Jitschin R, Böttcher M, Kiessling R. Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood. 2011;117(3):857–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Altman B, Stine Z, Dang C. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Timmerman L, Holton T, Yuneva M, Louie R, Padró M, Daemen A, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell. 2013;24(4):450–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kesarwani P, Prabhu A, Kant S, Kumar P, Graham SF, Buelow KL, et al. Tryptophan metabolism contributes to radiation-induced immune checkpoint reactivation in glioblastoma. Clin Cancer Res. 2018;24(15):3632–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wells G, Kennedy PT, Dahal LN. Investigating the role of indoleamine 2,3-dioxygenase in acute myeloid leukemia: a systematic review. Front Immunol. 2021;12: 651687.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ge S, Zhong H, Ma X, Zheng Y, Zou Y, Wang F, et al. Discovery of secondary sulphonamides as IDO1 inhibitors with potent antitumour effects in vivo. J Enzyme Inhib Med Chem. 2020;35(1):1240–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang K, Wu Y, Song Y, Yu B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J Hematol Oncol. 2021;14(1):68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lowe MM, Boothby I, Clancy S, Ahn RS, Liao W, Nguyen DN, et al. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight. 2019;4(24): e129756.

    PubMed Central 
    Article 

    Google Scholar
     

  • Ramapriyan R, Caetano M, Barsoumian H, Mafra A, Zambalde E, Menon H, et al. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther. 2019;195:162–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol. 2021;14(1):14.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen W, Shen L, Jiang J, Zhang L, Zhang Z, Pan J, et al. Antiangiogenic therapy reverses the immunosuppressive breast cancer microenvironment. Biomark Res. 2021;9(1):59.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 2021;14(1):10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Voron T, Marcheteau E, Pernot S, Colussi O, Tartour E, Taieb J, et al. Control of the immune response by pro-angiogenic factors. Front Oncol. 2014;4:70.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Semenza G. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Romero-Garcia S, Moreno-Altamirano M, Prado-Garcia H, Sánchez-García F. Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol. 2016;7:52.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109(9):3812–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin Y, Togashi Y, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;40(2):201-18.e9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song S. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 2004;21(4):527–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Z, Wang K, Ma J, Guo ZS. The role of all-trans retinoic acid in the biology of Foxp3+ regulatory T cells. Cell Mol Immunol. 2015;12(5):553–7.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bottcher M, Renner K, Berger R, Mentz K, Thomas S, Cardenas-Conejo ZE, et al. D-2-hydroxyglutarate interferes with HIF-1alpha stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization. Oncoimmunology. 2018;7(7): e1445454.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Richardson LG, Nieman LT, Stemmer-Rachamimov AO, Zheng XS, Stafford K, Nagashima H, et al. IDH-mutant gliomas harbor fewer regulatory T cells in humans and mice. Oncoimmunology. 2020;9(1):1806662.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pardoll D. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Topalian S, Hodi F, Brahmer J, Gettinger S, Smith D, McDermott D, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hodi F, O’Day S, McDermott D, Weber R, Sosman J, Haanen J, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marin-Acevedo J, Kimbrough E, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021;14(1):45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021;14(1):156.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang Z, Sun H, Yu J, Tian W, Song Y. Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 2021;14(1):180.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yi M, Zhang J, Li A, Niu M, Yan Y, Jiao Y, et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J Hematol Oncol. 2021;14(1):27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ding X, Zhao T, Lee CC, Yan C, Du H. Lysosomal acid lipase deficiency controls T- and B-regulatory cell homeostasis in the lymph nodes of mice with human cancer xenotransplants. Am J Pathol. 2021;191(2):353–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kunisada Y, Eikawa S, Tomonobu N, Domae S, Uehara T, Hori S, et al. Attenuation of CD4CD25 regulatory T cells in the tumor microenvironment by metformin, a Type 2 diabetes drug. EBioMedicine. 2017;25:154–64.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abu-Eid R, Samara R, Ozbun L, Abdalla M, Berzofsky J, Friedman K, et al. Selective inhibition of regulatory T cells by targeting the PI3K-Akt pathway. Cancer Immunol Res. 2014;2(11):1080–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chellappa S, Kushekhar K, Munthe LA, Tjonnfjord GE, Aandahl EM, Okkenhaug K, et al. The PI3K p110delta isoform inhibitor idelalisib preferentially inhibits human regulatory T cell function. J Immunol. 2019;202(5):1397–405.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hanna BS, Roessner PM, Scheffold A, Jebaraj BMC, Demerdash Y, Ozturk S, et al. PI3Kdelta inhibition modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia. Leukemia. 2019;33(6):1427–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu S, Ma AH, Zhu Z, Adib E, Rao T, Li N, et al. Synergistic antitumor activity of pan-PI3K inhibition and immune checkpoint blockade in bladder cancer. J Immunother Cancer. 2021;9(11): e002917.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ahmad S, Abu-Eid R, Shrimali R, Webb M, Verma V, Doroodchi A, et al. Differential PI3Kδ signaling in CD4 T-cell subsets enables selective targeting of T regulatory cells to enhance cancer immunotherapy. Cancer Res. 2017;77(8):1892–904.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ali K, Soond D, Pineiro R, Hagemann T, Pearce W, Lim E, et al. Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature. 2014;510(7505):407–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16(6):356–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)