• DiVincenzo DP. The physical implementation of quantum computation. Fortschr Phys. 2000;48(9–11):771–83. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.

    Article 
    MATH 

    Google Scholar
     

  • Wehner S, Elkouss D, Hanson R. Quantum Internet: a vision for the road ahead. Science. 2018;362(6412):9288. https://doi.org/10.1126/science.aam9288.

    ADS 
    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ, Aspuru-Guzik A, O’Brien JL. A variational eigenvalue solver on a photonic quantum processor. Nat Commun. 2014;5(1):4213. https://doi.org/10.1038/ncomms5213.

    ADS 
    Article 

    Google Scholar
     

  • Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature. 2001;409(6816):46–52. https://doi.org/10.1038/35051009.

    ADS 
    Article 

    Google Scholar
     

  • Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Rev Mod Phys. 2007;79:135–74. https://doi.org/10.1103/RevModPhys.79.135.

    ADS 
    Article 

    Google Scholar
     

  • Lodahl P. Quantum-dot based photonic quantum networks. Quantum Sci Technol. 2018;3(1):013001. https://doi.org/10.1088/2058-9565/aa91bb.

    ADS 
    Article 

    Google Scholar
     

  • Bäuerle C, Glattli DC, Meunier T, Portier F, Roche P, Roulleau P, Takada S, Waintal X. Coherent control of single electrons: a review of current progress. Rep Prog Phys. 2018;81(5):056503. https://doi.org/10.1088/1361-6633/aaa98a.

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Clauser JF. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys Rev D. 1974;9:853–60. https://doi.org/10.1103/PhysRevD.9.853.

    ADS 
    Article 

    Google Scholar
     

  • Eisaman MD, Fan J, Migdall A, Polyakov SV. Invited review article: single-photon sources and detectors. Rev Sci Instrum. 2011;82(7):071101. https://doi.org/10.1063/1.3610677.

    ADS 
    Article 

    Google Scholar
     

  • Michler P, Kiraz A, Becher C, Schoenfeld WV, Petroff PM, Zhang L, Hu E, Imamoglu A. A quantum dot single-photon turnstile device. Science. 2000;290(5500):2282–5. https://doi.org/10.1126/science.290.5500.2282.

    ADS 
    Article 

    Google Scholar
     

  • Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol. 2017;12(11):1026–39. https://doi.org/10.1038/nnano.2017.218.

    ADS 
    Article 

    Google Scholar
     

  • Arcari M, Söllner I, Javadi A, Lindskov Hansen S, Mahmoodian S, Liu J, Thyrrestrup H, Lee EH, Song JD, Stobbe S, Lodahl P. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett. 2014;113:093603. https://doi.org/10.1103/PhysRevLett.113.093603.

    ADS 
    Article 

    Google Scholar
     

  • Uppu R, Pedersen FT, Wang Y, Olesen CT, Papon C, Zhou X, Midolo L, Scholz S, Wieck AD, Ludwig A, Lodahl P. Scalable integrated single-photon source. Sci Adv. 2020;6(50). https://doi.org/10.1126/sciadv.abc8268.

  • Santori C, Fattal D, Vučković J, Solomon GS, Yamamoto Y. Indistinguishable photons from a single-photon device. Nature. 2002;419(6907):594–7. https://doi.org/10.1038/nature01086.

    ADS 
    Article 

    Google Scholar
     

  • He Y-M, He Y, Wei Y-J, Wu D, Atatüre M, Schneider C, Höfling S, Kamp M, Lu C-Y, Pan J-W. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol. 2013;8(3):213–7. https://doi.org/10.1038/nnano.2012.262.

    ADS 
    Article 

    Google Scholar
     

  • Munsch M, Malik NS, Dupuy E, Delga A, Bleuse J, Gérard J-M, Claudon J, Gregersen N, Mørk J. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys Rev Lett. 2013;110:177402. https://doi.org/10.1103/PhysRevLett.110.177402.

    ADS 
    Article 

    Google Scholar
     

  • Somaschi N, Giesz V, De Santis L, Loredo J, Almeida MP, Hornecker G, Portalupi SL, Grange T, Anton C, Demory J, Gómez C, Sagnes I, Lanzillotti-Kimura ND, Lemaítre A, Auffeves A, White AG, Lanco L, Senellart P. Near-optimal single-photon sources in the solid state. Nat Photonics. 2016;10(5):340–5. https://doi.org/10.1038/nphoton.2016.23.

    ADS 
    Article 

    Google Scholar
     

  • Tomm N, Javadi A, Antoniadis NO, Najer D, Löbl MC, Korsch AR, Schott R, Valentin SR, Wieck AD, Ludwig A, Warburton RJ. A bright and fast source of coherent single photons. Nat Nanotechnol. 2021;16(4):399–403. https://doi.org/10.1038/s41565-020-00831-x.

    ADS 
    Article 

    Google Scholar
     

  • Lesovik GB. Excess quantum noise in 2D ballistic point contacts. JETP Lett. 1989;49:592–4.

    ADS 

    Google Scholar
     

  • Büttiker M. Scattering theory of current and intensity noise correlations in conductors and wave guides. Phys Rev B. 1992;46:12485–507. https://doi.org/10.1103/PhysRevB.46.12485.

    ADS 
    Article 

    Google Scholar
     

  • Landauer R, Martin T. Equilibrium and shot noise in mesoscopic systems. Physica B. 1991;175:167–77. https://doi.org/10.1016/0921-4526(91)90710-V.

    ADS 
    Article 

    Google Scholar
     

  • Henny M, Oberholzer S, Strunk C, Heinzel T, Ensslin K, Holland M, Schönenberger C. The fermionic Hanbury Brown and Twiss experiment. Science. 1999;284(5412):296–8. https://doi.org/10.1126/science.284.5412.296.

    ADS 
    Article 

    Google Scholar
     

  • Oliver WD, Kim J, Liu RC, Yamamoto Y. Hanbury Brown and Twiss-type experiment with electrons. Science. 1999;284(5412):299–301. https://doi.org/10.1126/science.284.5412.299.

    ADS 
    Article 

    Google Scholar
     

  • Liu RC, Odom B, Yamamoto Y, Tarucha S. Quantum interference in electron collision. Nature. 1998;391:263.

    ADS 
    Article 

    Google Scholar
     

  • Ji Y, Chung Y, Sprinzak D, Heiblum M, Mahalu D, Shtrikman H. An electronic Mach–Zehnder interferometer. Nature. 2003;422(6930):415–8. https://doi.org/10.1038/nature01503.

    ADS 
    Article 

    Google Scholar
     

  • Fève G, Mahé A, Berroir J-M, Kontos T, Plaçais B, Glattli DC, Cavanna A, Etienne B, Jin Y. An on-demand coherent single-electron source. Science. 2007;316(5828):1169–72. https://doi.org/10.1126/science.1141243.

    ADS 
    Article 

    Google Scholar
     

  • Blumenthal MD, Kaestner B, Li L, Giblin S, Janssen TJBM, Pepper M, Anderson D, Jones G, Ritchie DA. Gigahertz quantized charge pumping. Nat Phys. 2007;3:343.

    Article 

    Google Scholar
     

  • Hermelin S, Takada S, Yamamoto M, Tarucha S, Wieck AD, Saminadayar L, Bäuerle C, Meunier T. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature. 2011;477:435.

    ADS 
    Article 

    Google Scholar
     

  • McNeil RPG, Kataoka M, Ford CJB, Barnes CHW, Anderson D, Jones GAC, Farrer I, Ritchie DA. On-demand single-electron transfer between distant quantum dots. Nature. 2011;477:439.

    ADS 
    Article 

    Google Scholar
     

  • Dubois J, Jullien T, Portier F, Roche P, Cavanna A, Jin Y, Wegscheider W, Roulleau P, Glattli DC. Minimal-excitation states for electron quantum optics using levitons. Nature. 2013;502:659. https://doi.org/10.1038/nature12713.

    ADS 
    Article 

    Google Scholar
     

  • Takada S, Edlbauer H, Lepage HV, Wang J, Mortemousque P-A, Georgiou G, Barnes CHW, Ford CJB, Yuan M, Santos PV, Waintal X, Ludwig A, Wieck AD, Urdampilleta M, Meunier T, Bäuerle C. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat Commun. 2019;10:4557. https://doi.org/10.1038/s41467-019-12514-w.

    ADS 
    Article 

    Google Scholar
     

  • Freise L, Gerster T, Reifert D, Weimann T, Pierz K, Hohls F, Ubbelohde N. Trapping and counting ballistic nonequilibrium electrons. Phys Rev Lett. 2020;124(12):127701. https://doi.org/10.1103/PhysRevLett.124.127701.

    ADS 
    Article 

    Google Scholar
     

  • Giblin SP, Kataoka M, Fletcher JD, See P, Janssen TJBM, Griffiths JP, Jones GAC, Farrer I, Ritchie DA. Towards a quantum representation of the ampere using single electron pumps. Nat Commun. 2012;3:930.

    ADS 
    Article 

    Google Scholar
     

  • Stein F, Scherer H, Gerster T, Behr R, Gotz M, Pesel E, Leicht C, Ubbelohde N, Weimann T, Pierz K, Schumacher HW, Hohls F. Robustness of single-electron pumps at sub-ppm current accuracy level. Metrologia. 2017;54(1):1. https://doi.org/10.1088/1681-7575/54/1/S1.

    ADS 
    Article 

    Google Scholar
     

  • Moreau E, Robert I, Gérard JM, Abram I, Manin L, Thierry-Mieg V. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl Phys Lett. 2001;79(18):2865–7. https://doi.org/10.1063/1.1415346.

    ADS 
    Article 

    Google Scholar
     

  • Thomas S, Senellart P. The race for the ideal single-photon source is on. Nat Nanotechnol. 2021;16(4):367–8. https://doi.org/10.1038/s41565-021-00851-1.

    ADS 
    Article 

    Google Scholar
     

  • Hayashi T, Fujisawa T, Cheong HD, Jeong YH, Hirayama Y. Coherent manipulation of electronic states in a double quantum dot. Phys Rev Lett. 2003;91:226804. https://doi.org/10.1103/PhysRevLett.91.226804.

    ADS 
    Article 

    Google Scholar
     

  • Petta JR, Johnson AC, Marcus CM, Hanson MP, Gossard AC. Manipulation of a single charge in a double quantum dot. Phys Rev Lett. 2004;93:186802. https://doi.org/10.1103/PhysRevLett.93.186802.

    ADS 
    Article 

    Google Scholar
     

  • Petersson KD, Petta JR, Lu H, Gossard AC. Quantum coherence in a one-electron semiconductor charge qubit. Phys Rev Lett. 2010;105:246804. https://doi.org/10.1103/PhysRevLett.105.246804.

    ADS 
    Article 

    Google Scholar
     

  • Stockklauser A, Scarlino P, Koski JV, Gasparinetti S, Andersen CK, Reichl C, Wegscheider W, Ihn T, Ensslin K, Wallraff A. Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator. Phys Rev X. 2017;7:011030. https://doi.org/10.1103/PhysRevX.7.011030.

    Article 

    Google Scholar
     

  • Roulleau P, Portier F, Roche P, Cavanna A, Faini G, Gennser U, Mailly D. Direct measurement of the coherence length of edge states in the integer quantum Hall regime. Phys Rev Lett. 2008;100:126802. https://doi.org/10.1103/PhysRevLett.100.126802.

    ADS 
    Article 

    Google Scholar
     

  • Yamamoto M, Takada S, Bäuerle C, Watanabe K, Wieck AD, Tarucha S. Electrical control of a solid-state flying qubit. Nat Nanotechnol. 2012;7:247–51. https://doi.org/10.1038/nnano.2012.28.

    ADS 
    Article 

    Google Scholar
     

  • Duprez H, Sivre E, Anthore A, Aassime A, Cavanna A, Ouerghi A, Gennser U, Pierre F. Macroscopic electron quantum coherence in a solid-state circuit. Phys Rev X. 2019;9:021030. https://doi.org/10.1103/PhysRevX.9.021030.

    Article 

    Google Scholar
     

  • Duprez H, Sivre E, Anthore A, Aassime A, Cavanna A, Gennser U, Pierre F. Transmitting the quantum state of electrons across a metallic island with Coulomb interaction. Science. 2019;366(6470):1243–7. https://doi.org/10.1126/science.aaw7856.

    ADS 
    Article 

    Google Scholar
     

  • Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL. Quantum computers. Nature. 2010;464:45–53. https://doi.org/10.1038/nature08812.

    ADS 
    Article 

    Google Scholar
     

  • Popkin G. Scientists are close to building a quantum computer that can beat a conventional one. Science. 2016. https://doi.org/10.1126/science.aal0442.

    MathSciNet 
    Article 

    Google Scholar
     

  • Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S, Oliver WD. Superconducting qubits: current state of play. Annu Rev Condens Matter Phys. 2020;11(1):369–95. https://doi.org/10.1146/annurev-conmatphys-031119-050605.

    Article 

    Google Scholar
     

  • Bruzewicz CD, Chiaverini J, McConnell R, Sage JM. Trapped-ion quantum computing: progress and challenges. Appl Phys Rev. 2019;6(2):021314. https://doi.org/10.1063/1.5088164.

    Article 

    Google Scholar
     

  • Stano P, Loss D. Review of performance metrics of spin qubits in gated semiconducting nanostructures. 2021. arXiv:2107.06485.

  • UltraFastNano. Electronic generation and detection in nanoelectronic devices at the picosecond scale. 2020. https://cordis.europa.eu/project/id/862683.

  • Niimi Y, Baines Y, Capron T, Mailly D, Lo F-Y, Wieck AD, Meunier T, Saminadayar L, Bäuerle C. Effect of disorder on the quantum coherence in mesoscopic wires. Phys Rev Lett. 2009;102:226801. https://doi.org/10.1103/PhysRevLett.102.226801.

    ADS 
    Article 

    Google Scholar
     

  • Niimi Y, Baines Y, Capron T, Mailly D, Lo F-Y, Wieck AD, Meunier T, Saminadayar L, Bäuerle C. Quantum coherence at low temperatures in mesoscopic systems: effect of disorder. Phys Rev B. 2010;81:245306. https://doi.org/10.1103/PhysRevB.81.245306.

    ADS 
    Article 

    Google Scholar
     

  • Roussely G, Arrighi E, Georgiou G, Takada S, Schalk M, Urdampilleta M, Ludwig A, Wieck AD, Armagnat P, Kloss T, Waintal X, Meunier T, Bäuerle C. Unveiling the bosonic nature of an ultrashort few-electron pulse. Nat Commun. 2018;9:2811. https://doi.org/10.1038/s41467-018-05203-7.

    ADS 
    Article 

    Google Scholar
     

  • Bocquillon E, Freulon V, Berroir J-M, Degiovanni P, Plaçais B, Cavanna A, Jin Y, Fève G. Coherence and indistinguishability of single electrons emitted by independent sources. Science. 2013;339(6123):1054–7. https://doi.org/10.1126/science.1232572.

    ADS 
    Article 

    Google Scholar
     

  • Thomas C, Hatke AT, Tuaz A, Kallaher R, Wu T, Wang T, Diaz RE, Gardner GC, Capano MA, Manfra MJ. High-mobility InAs 2DEGs on GaSb substrates: a platform for mesoscopic quantum transport. Phys Rev Materials. 2018;2:104602. https://doi.org/10.1103/PhysRevMaterials.2.104602.

    ADS 
    Article 

    Google Scholar
     

  • Chung YJ, Villegas Rosales KA, Baldwin KW, Madathil PT, West KW, Shayegan M, Pfeiffer LN. Ultra-high-quality two-dimensional electron systems. Nat Mater. 2021;20(5):632–7. https://doi.org/10.1038/s41563-021-00942-3.

    ADS 
    Article 

    Google Scholar
     

  • Talyanskii VI, Shilton JM, Pepper M, Smith CG, FordCJB, Linfield EH, Ritchie DA, Jones GAC. Single-electron transport in a one-dimensional channel by high-frequency surface acoustic waves. Phys Rev B. 1997;56:15180–4. https://doi.org/10.1103/PhysRevB.56.15180.

    ADS 
    Article 

    Google Scholar
     

  • Kaestner B, Kashcheyevs V, Amakawa S, Blumenthal MD, Li L, Janssen TJBM, Hein G, Pierz K, Weimann T, Siegner U, Schumacher HW. Single-parameter nonadiabatic quantized charge pumping. Phys Rev B. 2008;77:153301. https://doi.org/10.1103/PhysRevB.77.153301.

    ADS 
    Article 

    Google Scholar
     

  • Yamahata G, Giblin SP, Kataoka M, Karasawa T, Fujiwara A. High-accuracy current generation in the nanoampere regime from a silicon single-trap electron pump. Sci Rep. 2017;7(1):45137. https://doi.org/10.1038/srep45137.

    ADS 
    Article 

    Google Scholar
     

  • Kaestner B, Kashcheyevs V. Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress. Rep Prog Phys. 2015;78(10):103901. https://doi.org/10.1088/0034-4885/78/10/103901.

    ADS 
    Article 

    Google Scholar
     

  • Jullien T, Roulleau P, Roche B, Cavanna A, Jin Y, Glattli DC. Quantum tomography of an electron. Nature. 2014;514:603.

    ADS 
    Article 

    Google Scholar
     

  • Bisognin R, Marguerite A, Roussel B, Kumar M, Cabart C, Chapdelaine C, Mohammad-Djafari A, Berroir J-M, Bocquillon E, Plaçais B, Cavanna A, Gennser U, Jin Y, Degiovanni P, Fève G. Quantum tomography of electrical currents. Nat Commun. 2019;10:3379. https://doi.org/10.1038/s41467-019-11369-5.

    ADS 
    Article 

    Google Scholar
     

  • Wixforth A, Kotthaus JP, Weimann G. Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system. Phys Rev Lett. 1986;56:2104–6. https://doi.org/10.1103/PhysRevLett.56.2104.

    ADS 
    Article 

    Google Scholar
     

  • Morgan D. Surface acoustic wave filters: with applications to electronic communications and signal processing. 2nd ed. Oxford: Academic Press; 2007.


    Google Scholar
     

  • de Lima MM, Santos PV. Modulation of photonic structures by surface acoustic waves. Rep Prog Phys. 2005;68(7):1639–701. https://doi.org/10.1088/0034-4885/68/7/r02.

    ADS 
    Article 

    Google Scholar
     

  • Kataoka M, Astley MR, Thorn AL, Oi DKL, Barnes CHW, Ford CJB, Anderson D, Jones GAC, Farrer I, Ritchie DA, Pepper M. Coherent time evolution of a single-electron wave function. Phys Rev Lett. 2009;102:156801. https://doi.org/10.1103/PhysRevLett.102.156801.

    ADS 
    Article 

    Google Scholar
     

  • Ito R, Takada S, Ludwig A, Wieck AD, Tarucha S, Yamamoto M. Coherent beam splitting of flying electrons driven by a surface acoustic wave. Phys Rev Lett. 2021;126:070501. https://doi.org/10.1103/PhysRevLett.126.070501.

    ADS 
    Article 

    Google Scholar
     

  • Edlbauer H, Wang J, Ota S, Richard A, Jadot B, Mortemousque P-A, Okazaki Y, Nakamura S, Kodera T, Kaneko N-H, Ludwig A, Wieck AD, Urdampilleta M, Meunier T, Bäuerle C, Takada S. In-flight distribution of an electron within a surface acoustic wave. Appl Phys Lett. 2021;119(11):114004. https://doi.org/10.1063/5.0062491.

    ADS 
    Article 

    Google Scholar
     

  • Jadot B, Mortemousque P-A, Chanrion E, Thiney V, Ludwig A, Wieck AD, Urdampilleta M, Bäuerle C, Meunier T. Distant spin entanglement via fast and coherent electron shuttling. Nat Nanotechnol. 2021;16(5):570–5. https://doi.org/10.1038/s41565-021-00846-y.

    ADS 
    Article 

    Google Scholar
     

  • Taubert D, Schinner GJ, Tranitz HP, Wegscheider W, Tomaras C, Kehrein S, Ludwig S. Electron-avalanche amplifier based on the electronic venturi effect. Phys Rev B. 2010;82:161416. https://doi.org/10.1103/PhysRevB.82.161416.

    ADS 
    Article 

    Google Scholar
     

  • Taubert D, Tomaras C, Schinner GJ, Tranitz HP, Wegscheider W, Kehrein S, Ludwig S. Relaxation of hot electrons in a degenerate two-dimensional electron system: transition to one-dimensional scattering. Phys Rev B. 2011;83:235404. https://doi.org/10.1103/PhysRevB.83.235404.

    ADS 
    Article 

    Google Scholar
     

  • Fletcher JD, See P, Howe H, Pepper M, Giblin SP, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Janssen TJBM, Kataoka M. Clock-controlled emission of single-electron wave packets in a solid-state circuit. Phys Rev Lett. 2013;111(21):216807. https://doi.org/10.1103/PhysRevLett.111.216807.

    ADS 
    Article 

    Google Scholar
     

  • Emary C, Dyson A, Ryu S, Sim H-S, Kataoka M. Phonon emission and arrival times of electrons from a single-electron source. Phys Rev B. 2016;93(3):035436. https://doi.org/10.1103/PhysRevB.93.035436.

    ADS 
    Article 

    Google Scholar
     

  • Emary C, Clark LA, Kataoka M, Johnson N. Energy relaxation in hot electron quantum optics via acoustic and optical phonon emission. Phys Rev B. 2019;99(4):045306. https://doi.org/10.1103/PhysRevB.99.045306.

    ADS 
    Article 

    Google Scholar
     

  • Johnson N, Emary C, Ryu S, Sim H-S, See P, Fletcher JD, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Pepper M, Janssen TJBM, Kataoka M. LO-phonon emission rate of hot electrons from an on-demand single-electron source in a GaAs/AlGaAs heterostructure. Phys Rev Lett. 2018;121(13):137703. https://doi.org/10.1103/PhysRevLett.121.137703.

    ADS 
    Article 

    Google Scholar
     

  • Ota T, Akiyama S, Hashisaka M, Muraki K, Fujisawa T. Spectroscopic study on hot-electron transport in a quantum Hall edge channel. Phys Rev B. 2019;99:085310. https://doi.org/10.1103/PhysRevB.99.085310.

    ADS 
    Article 

    Google Scholar
     

  • Heiblum M, Nathan MI, Thomas DC, Knoedler CM. Direct observation of ballistic transport in gaas. Phys Rev Lett. 1985;55:2200–3. https://doi.org/10.1103/PhysRevLett.55.2200.

    ADS 
    Article 

    Google Scholar
     

  • Akiyama S, Hirasawa T, Sato Y, Akiho T, Muraki K, Fujisawa T. Ballistic hot-electron transport in a quantum Hall edge channel defined by a double gate. Appl Phys Lett. 2019;115(24):243106. https://doi.org/10.1063/1.5126776.

    ADS 
    Article 

    Google Scholar
     

  • Kataoka M, Johnson N, Emary C, See P, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Pepper M, Janssen TJBM. Time-of-flight measurements of single-electron wave packets in quantum Hall edge states. Phys Rev Lett. 2016;116(12):126803. https://doi.org/10.1103/PhysRevLett.116.126803.

    ADS 
    Article 

    Google Scholar
     

  • Waldie J, See P, Kashcheyevs V, Griffiths JP, Farrer I, Jones GAC, Ritchie DA, Janssen TJBM, Kataoka M. Measurement and control of electron wave packets from a single-electron source. Phys Rev B. 2015;92(12):125305. https://doi.org/10.1103/PhysRevB.92.125305.

    ADS 
    Article 

    Google Scholar
     

  • Kataoka M, Fletcher JD, Johnson N. Time-resolved single-electron wave-packet detection. Phys Status Solidi B. 2017;254(3):1600547. https://doi.org/10.1002/pssb.201600547.

    ADS 
    Article 

    Google Scholar
     

  • Fletcher JD, Johnson N, Locane E, See P, Griffiths JP, Farrer I, Ritchie DA, Brouwer PW, Kashcheyevs V, Kataoka M. Continuous-variable tomography of solitary electrons. Nat Commun. 2019;10(5298):1–7. https://doi.org/10.1038/s41467-019-13222-1.

    Article 

    Google Scholar
     

  • Locane E, Brouwer PW, Kashcheyevs V. Time-energy filtering of single electrons in ballistic waveguides. New J Phys. 2019;21:093042. https://doi.org/10.1088/1367-2630/ab3fbb.

    MathSciNet 
    Article 

    Google Scholar
     

  • Ryu S, Kataoka M, Sim H-S. Ultrafast emission and detection of a single-electron Gaussian wave packet: a theoretical study. Phys Rev Lett. 2016;117(14):146802. https://doi.org/10.1103/PhysRevLett.117.146802.

    ADS 
    Article 

    Google Scholar
     

  • Ubbelohde N, Hohls F, Kashcheyevs V, Wagner T, Fricke L, Kästner B, Pierz K, Schumacher HW, Haug RJ. Partitioning of on-demand electron pairs. Nat Nanotechnol. 2015;10(1):46–9. https://doi.org/10.1038/nnano.2014.275.

    ADS 
    Article 

    Google Scholar
     

  • Fricke L, Wulf M, Kaestner B, Kashcheyevs V, Timoshenko J, Nazarov P, Hohls F, Mirovsky P, Mackrodt B, Dolata R, Weimann T, Pierz K, Schumacher HW. Counting statistics for electron capture in a dynamic quantum dot. Phys Rev Lett. 2013;110:126803. https://doi.org/10.1103/PhysRevLett.110.126803.

    ADS 
    Article 

    Google Scholar
     

  • Schulenborg J, Saptsov RB, Haupt F, Splettstoesser J, Wegewijs MR. Fermion-parity duality and energy relaxation in interacting open systems. Phys Rev B. 2016;93(8):081411. https://doi.org/10.1103/PhysRevB.93.081411.

    ADS 
    Article 

    Google Scholar
     

  • Schulenborg J, Splettstoesser J, Wegewijs MR. Duality for open fermion systems: energy-dependent weak coupling and quantum master equations. Phys Rev B. 2018;98(23):235405. https://doi.org/10.1103/PhysRevB.98.235405.

    ADS 
    Article 

    Google Scholar
     

  • Schulenborg J, Splettstoesser J, Governale M, Contreras-Pulido LD. Detection of the relaxation rates of an interacting quantum dot by a capacitively coupled sensor dot. Phys Rev B. 2014;89(19):195305. https://doi.org/10.1103/PhysRevB.89.195305.

    ADS 
    Article 

    Google Scholar
     

  • Riwar R-P, Roche B, Jehl X, Splettstoesser J. Readout of relaxation rates by nonadiabatic pumping spectroscopy. Phys Rev B. 2016;93(23):235401. https://doi.org/10.1103/PhysRevB.93.235401.

    ADS 
    Article 

    Google Scholar
     

  • Clark LA, Kataoka M, Emary C. Mitigating decoherence in hot electron interferometry. New J Phys. 2020;22(10):103031. https://doi.org/10.1088/1367-2630/abb9e5.

    Article 

    Google Scholar
     

  • Barratt CJ, Ryu S, Clark LA, Sim H-S, Kataoka M, Emary C. Phase averaging and arrival times in a hot-electron Mach-Zehnder interferometer. 2021. arXiv:2104.01653.

  • Haack G, Moskalets M, Splettstoesser J, Büttiker M. Coherence of single-electron sources from Mach-Zehnder interferometry. Phys Rev B. 2011;84(8):081303. https://doi.org/10.1103/PhysRevB.84.081303.

    ADS 
    Article 

    Google Scholar
     

  • Juergens S, Splettstoesser J, Moskalets M. Single-particle interference versus two-particle collisions. Europhys Lett. 2011;96(3):37011. https://doi.org/10.1209/0295-5075/96/37011.

    ADS 
    Article 

    Google Scholar
     

  • Splettstoesser J, Moskalets M, Büttiker M. Two-particle nonlocal Aharonov-Bohm effect from two single-particle emitters. Phys Rev Lett. 2009;103(7):076804. https://doi.org/10.1103/PhysRevLett.103.076804.

    ADS 
    Article 

    Google Scholar
     

  • Johnson N, Fletcher JD, Humphreys DA, See P, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Pepper M, Janssen TJBM, Kataoka M. Ultrafast voltage sampling using single-electron wavepackets. Appl Phys Lett. 2017;110(10):102105. https://doi.org/10.1063/1.4978388.

    ADS 
    Article 

    Google Scholar
     

  • Levitov LS, Lee H, Lesovik GB. Electron counting statistics and coherent states of electric current. J Math Phys. 1996;37(10):4845–66. https://doi.org/10.1063/1.531672.

    ADS 
    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Ivanov DA, Lee HW, Levitov LS. Coherent states of alternating current. Phys Rev B. 1997;56:6839–50. https://doi.org/10.1103/PhysRevB.56.6839.

    ADS 
    Article 

    Google Scholar
     

  • Keeling J, Klich I, Levitov LS. Minimal excitation states of electrons in one-dimensional wires. Phys Rev Lett. 2006;97:116403. https://doi.org/10.1103/PhysRevLett.97.116403.

    ADS 
    Article 

    Google Scholar
     

  • Grenier C, Dubois J, Jullien T, Roulleau P, Glattli DC, Degiovanni P. Fractionalization of minimal excitations in integer quantum Hall edge channels. Phys Rev B. 2013;88:085302. https://doi.org/10.1103/PhysRevB.88.085302.

    ADS 
    Article 

    Google Scholar
     

  • Moskalets M. First-order correlation function of a stream of single-electron wave packets. Phys Rev B. 2015;91:195431. https://doi.org/10.1103/PhysRevB.91.195431.

    ADS 
    Article 

    Google Scholar
     

  • Glattli DC, Roulleau P. Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors. Physica E, Low-Dimens Syst Nanostruct. 2016;76:216–22. https://doi.org/10.1016/j.physe.2015.10.034.

    ADS 
    Article 

    Google Scholar
     

  • Ferraro D, Ronetti F, Vannucci L, Acciai M, Rech J, Jockheere T, Martin T, Sassetti M. Hong-Ou-Mandel characterization of multiply charged Levitons. Eur Phys J Spec Top. 2018;227(12):1345–59. https://doi.org/10.1140/epjst/e2018-800074-1.

    Article 

    Google Scholar
     

  • Vanević M, Gabelli J, Belzig W, Reulet B. Electron and electron-hole quasiparticle states in a driven quantum contact. Phys Rev B. 2016;93:041416. https://doi.org/10.1103/PhysRevB.93.041416.

    ADS 
    Article 

    Google Scholar
     

  • Yin Y. Quasiparticle states of on-demand coherent electron sources. J Phys Condens Matter. 2019;31(24):245301. https://doi.org/10.1088/1361-648x/ab0fc4.

    ADS 
    Article 

    Google Scholar
     

  • Kotilahti J, Burset P, Moskalets M, Flindt C. Multi-particle interference in an electronic Mach—Zehnder interferometer. Entropy. 2021;23(6):736. https://doi.org/10.3390/e23060736.

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Grenier C, Hervé R, Bocquillon E, Parmentier FD, Plaçais B, Berroir JM, Fève G, Degiovanni P. Single-electron quantum tomography in quantum Hall edge channels. New J Phys. 2011;13(9):093007. https://doi.org/10.1088/1367-2630/13/9/093007.

    Article 

    Google Scholar
     

  • Roussel B, Cabart C, Fève G, Degiovanni P. Processing quantum signals carried by electrical currents. PRX Quantum. 2021;2:020314. https://doi.org/10.1103/PRXQuantum.2.020314.

    ADS 
    Article 

    Google Scholar
     

  • Ferraro D, Feller A, Ghibaudo A, Thibierge E, Bocquillon E, Fève G, Grenier C, Degiovanni P. Wigner function approach to single electron coherence in quantum Hall edge channels. Phys Rev B. 2013;88:205303. https://doi.org/10.1103/PhysRevB.88.205303.

    ADS 
    Article 

    Google Scholar
     

  • Ferraro D, Roussel B, Cabart C, Thibierge E, Fève G, Grenier C, Degiovanni P. Real-time decoherence of Landau and Levitov quasiparticles in quantum Hall edge channels. Phys Rev Lett. 2014;113:166403. https://doi.org/10.1103/PhysRevLett.113.166403.

    ADS 
    Article 

    Google Scholar
     

  • Cabart C, Roussel B, Fève G, Degiovanni P. Taming electronic decoherence in one-dimensional chiral ballistic quantum conductors. Phys Rev B. 2018;98:155302. https://doi.org/10.1103/PhysRevB.98.155302.

    ADS 
    Article 

    Google Scholar
     

  • Rebora G, Acciai M, Ferraro D, Sassetti M. Collisional interferometry of levitons in quantum Hall edge channels at (nu =2). Phys Rev B. 2020;101:245310. https://doi.org/10.1103/PhysRevB.101.245310.

    ADS 
    Article 

    Google Scholar
     

  • Wahl C, Rech J, Jonckheere T, Martin T. Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer. Phys Rev Lett. 2014;112:046802. https://doi.org/10.1103/PhysRevLett.112.046802.

    ADS 
    Article 

    Google Scholar
     

  • Freulon V, Marguerite A, Berroir J-M, Plaçais B, Cavanna A, Jin Y, Fève G. Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization. Nat Commun. 2015;6:6854.

    ADS 
    Article 

    Google Scholar
     

  • Marguerite A, Cabart C, Wahl C, Roussel B, Freulon V, Ferraro D, Grenier C, Berroir J-M, Plaçais B, Jonckheere T, Rech J, Martin T, Degiovanni P, Cavanna A, Jin Y, Fève G. Decoherence and relaxation of a single electron in a one-dimensional conductor. Phys Rev B. 2016;94:115311. https://doi.org/10.1103/PhysRevB.94.115311.

    ADS 
    Article 

    Google Scholar
     

  • Auston DH. Picosecond optoelectronic switching and gating in silicon. Appl Phys Lett. 1975;26(3):101–3. https://doi.org/10.1063/1.88079.

    ADS 
    Article 

    Google Scholar
     

  • Mourou G, Stancampiano CV, Blumenthal D. Picosecond microwave pulse generation. Appl Phys Lett. 1981;38(6):470–2. https://doi.org/10.1063/1.92407.

    ADS 
    Article 

    Google Scholar
     

  • Auston DH, Cheung KP, Smith PR. Picosecond photoconducting hertzian dipoles. Appl Phys Lett. 1984;45(3):284–6. https://doi.org/10.1063/1.95174.

    ADS 
    Article 

    Google Scholar
     

  • Heshmat B, Pahlevaninezhad H, Pang Y, Masnadi-Shirazi M, Burton Lewis R, Tiedje T, Gordon R, Darcie TE. Nanoplasmonic terahertz photoconductive switch on gaas. Nano Lett. 2012;12(12):6255–9. https://doi.org/10.1021/nl303314a.

    ADS 
    Article 

    Google Scholar
     

  • Georgiou G, Geffroy C, Bäuerle C, Roux J-F. Efficient three-dimensional photonic—plasmonic photoconductive switches for picosecond THz pulses. ACS Photonics. 2020;7(6):1444–51. https://doi.org/10.1021/acsphotonics.0c00044.

    Article 

    Google Scholar
     

  • Roulleau P, Portier F, Glattli DC, Roche P, Cavanna A, Faini G, Gennser U, Mailly D. Finite bias visibility of the electronic Mach-Zehnder interferometer. Phys Rev B. 2007;76(16):161309. https://doi.org/10.1103/physrevb.76.161309.

    ADS 
    Article 

    Google Scholar
     

  • Neder I, Ofek N, Chung Y, Heiblum M, Mahalu D, Umansky V. Interference between two indistinguishable electrons from independent sources. Nature. 2007;448:333.

    ADS 
    Article 

    Google Scholar
     

  • Forrester DM, Kusmartsev FV. Graphene levitons and anti-levitons in magnetic fields. Nanoscale. 2014;6:7594–603. https://doi.org/10.1039/C4NR00754A.

    ADS 
    Article 

    Google Scholar
     

  • Forrester DM. Confinement effects of levitons in a graphene cosmology laboratory. RSC Adv. 2015;5:5442–9. https://doi.org/10.1039/C4RA11227J.

    ADS 
    Article 

    Google Scholar
     

  • Thalineau R, Wieck AD, Bäuerle C, Meunier T. Using a two-electron spin qubit to detect electrons flying above the Fermi sea. 2014. arXiv:1403.7770.

  • Meunier T. private communication.

  • Glattli DC, Nath J, Taktak I, Roulleau P, Bäuerle C, Waintal X. Design of a single-shot electron detector with sub-electron sensitivity for electron flying qubit operation. 2020. https://arxiv.org/abs/2002.03947.

  • Ionicioiu R, Amaratunga G, Udrea F. Quantum computation with ballistic electrons. Int J Mod Phys B. 2001;15(2):125–33.

    ADS 
    Article 

    Google Scholar
     

  • Bertoni A, Bordone P, Brunetti R, Jacoboni C, Reggiani S. Quantum logic gates based on coherent electron transport in quantum wires. Phys Rev Lett. 2000;84:5912–5. https://doi.org/10.1103/PhysRevLett.84.5912.

    ADS 
    Article 
    MATH 

    Google Scholar
     

  • Ionicioiu R, Zanardi P, Rossi F. Testing Bell’s inequality with ballistic electrons in semiconductors. Phys Rev A. 2001;63:050101. https://doi.org/10.1103/PhysRevA.63.050101.

    ADS 
    Article 

    Google Scholar
     

  • Slussarenko S, Pryde GJ. Photonic quantum information processing: a concise review. Appl Phys Rev. 2019;6(4):041303. https://doi.org/10.1063/1.5115814.

    Article 

    Google Scholar
     

  • Reiher M, Wiebe N, Svore KM, Wecker D, Troyer M. Elucidating reaction mechanisms on quantum computers. Proc Natl Acad Sci USA. 2017;114(29):7555–60. https://doi.org/10.1073/pnas.1619152114.

    ADS 
    Article 

    Google Scholar
     

  • Zhou Y, Stoudenmire EM, Waintal X. What limits the simulation of quantum computers? Phys Rev X. 2020;10:041038. https://doi.org/10.1103/PhysRevX.10.041038.

    Article 

    Google Scholar
     

  • Takeda S, Furusawa A. Universal quantum computing with measurement-induced continuous-variable gate sequence in a loop-based architecture. Phys Rev Lett. 2017;119:120504. https://doi.org/10.1103/PhysRevLett.119.120504.

    ADS 
    Article 

    Google Scholar
     

  • Waintal X. What determines the ultimate precision of a quantum computer. Phys Rev A. 2019;99:042318. https://doi.org/10.1103/PhysRevA.99.042318.

    ADS 
    Article 

    Google Scholar
     

  • Glattli DC, Andrei EY, Deville G, Poitrenaud J, Williams FIB. Dynamical Hall effect in a two-dimensional classical plasma. Phys Rev Lett. 1985;54:1710–3. https://doi.org/10.1103/PhysRevLett.54.1710.

    ADS 
    Article 

    Google Scholar
     

  • Mast DB, Dahm AJ, Fetter AL. Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid. Phys Rev Lett. 1985;54:1706–9. https://doi.org/10.1103/PhysRevLett.54.1706.

    ADS 
    Article 

    Google Scholar
     

  • Dahm AJ, Vinen WF. Electrons and ions at the helium surface. Phys Today. 1987;40(2):43–50. https://doi.org/10.1063/1.881098.

    Article 

    Google Scholar
     

  • Byeon H, Nasyedkin K, Lane JR, Beysengulov NR, Zhang L, Loloee R, Pollanen J. Piezoacoustics for precision control of electrons floating on helium. Nat Commun. 2021;12(1):4150. https://doi.org/10.1038/s41467-021-24452-7.

    ADS 
    Article 

    Google Scholar
     

  • Zhou X, Koolstra G, Zhang X, Yang G, Han X, Dizdar B, Li X, Divan R, Guo W, Murch KW, Schuster DI, Jin D. Single electrons on solid neon as a solid-state qubit platform. Nature. 2022;605(7908):46–50. https://doi.org/10.1038/s41586-022-04539-x.

    ADS 
    Article 

    Google Scholar
     

  • Chatterjee A, Stevenson P, De Franceschi S, Morello A, de Leon NP, Kuemmeth F. Semiconductor qubits in practice. Nat Rev Phys. 2021;3(3):157–77. https://doi.org/10.1038/s42254-021-00283-9.

    Article 

    Google Scholar
     

  • Trellakis A, Zibold T, Andlauer T, Birner S, Smith RK, Morschl R, Vogl P. The 3D nanometer device project nextnano: concepts, methods, results. J Comput Electron. 2006;5(4):285–9. https://doi.org/10.1007/s10825-006-0005-x.

    Article 

    Google Scholar
     

  • Groth CW, Wimmer M, Akhmerov AR, Waintal X. Kwant: a software package for quantum transport. New J Phys. 2014;16(6):063065. https://doi.org/10.1088/1367-2630/16/6/063065.

    Article 

    Google Scholar
     

  • Kloss T, Weston J, Gaury B, Rossignol B, Groth C, Waintal X. Tkwant: a software package for time-dependent quantum transport. New J Phys. 2021;23(2):023025. https://doi.org/10.1088/1367-2630/abddf7.

    MathSciNet 
    Article 

    Google Scholar
     

  • Bautze T, Süssmeier C, Takada S, Groth C, Meunier T, Yamamoto M, Tarucha S, Waintal X, Bäuerle C. Theoretical, numerical, and experimental study of a flying qubit electronic interferometer. Phys Rev B. 2014;89:125432. https://doi.org/10.1103/PhysRevB.89.125432.

    ADS 
    Article 

    Google Scholar
     

  • Weston J, Waintal X. Towards realistic time-resolved simulations of quantum devices. J Comput Electron. 2016,15(4):1148–57. https://doi.org/10.1007/s10825-016-0855-9.

    Article 

    Google Scholar
     

  • Rossignol B, Kloss T, Armagnat P, Waintal X. Toward flying qubit spectroscopy. Phys Rev B. 2018;98:205302. https://doi.org/10.1103/PhysRevB.98.205302.

    ADS 
    Article 

    Google Scholar
     

  • Datta S. Quantum transport: atom to transistor. Cambridge: Cambridge University Press; 2005. https://doi.org/10.1017/CBO9781139164313.

    Book 
    MATH 

    Google Scholar
     

  • Birner S, Schindler C, Greck P, Sabathil M, Vogl P. Ballistic quantum transport using the contact block reduction (CBR) method. J Comput Electron. 2009;8:267–86. https://doi.org/10.1007/s10825-009-0293-z.

    Article 

    Google Scholar
     

  • Trellakis A, Galick AT, Pacelli A, Ravaioli U. Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J Appl Phys. 1997;81(12):7880–4. https://doi.org/10.1063/1.365396.

    ADS 
    Article 

    Google Scholar
     

  • Armagnat P, Lacerda-Santos A, Rossignol B, Groth C, Waintal X. The self-consistent quantum-electrostatic problem in strongly non-linear regime. SciPost Phys. 2019;7:31. https://doi.org/10.21468/SciPostPhys.7.3.031.

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Grange T, Stark D, Scalari G, Faist J, Persichetti L, Di Gaspare L, De Seta M, Ortolani M, Paul DJ, Capellini G, Birner S, Virgilio M. Room temperature operation of n-type Ge/SiGe terahertz quantum cascade lasers predicted by non-equilibrium Green’s functions. Appl Phys Lett. 2019;114(11):111102. https://doi.org/10.1063/1.5082172.

    ADS 
    Article 

    Google Scholar
     

  • Mamaluy D, Sabathil M, Vogl P. Efficient method for the calculation of ballistic quantum transport. J Appl Phys. 2003;93:4628. https://doi.org/10.1063/1.1560567.

    ADS 
    Article 

    Google Scholar
     

  • Birner S, Hackenbuchner S, Sabathil M, Zandler G, Majewski J, Andlauer T, Zibold T, Morschl R, Trellakis A, Vogl P. Modeling of semiconductor nanostructures with nextnano3. Acta Phys Pol A. 2006;110:111–24. https://doi.org/10.12693/APhysPolA.110.111.

    ADS 
    Article 

    Google Scholar
     

  • Birner S, Zibold T, Andlauer T, Kubis T, Sabathil M, Trellakis A, Vogl P. nextnano: general purpose 3-D simulations. IEEE Trans Electron Devices. 2007;54:2137–42. https://doi.org/10.1109/TED.2007.902871.

    ADS 
    Article 

    Google Scholar
     

  • Zibold T, Vogl P, Bertoni A. Theory of semiconductor quantum-wire-based single- and two-qubit gates. Phys Rev B. 2007;76:195301. https://doi.org/10.1103/PhysRevB.76.195301.

    ADS 
    Article 

    Google Scholar
     

  • Caflisch RE, Gyure MF, Robinson HD, Yablonovitch E. Modeling, design, and optimization of a solid state electron spin qubit. SIAM J Appl Math. 2005;65(4):1285–304.

    MathSciNet 
    Article 

    Google Scholar
     

  • Wild A, Sailer J, Nützel J, Abstreiter G, Ludwig S, Bougeard D. Electrostatically defined quantum dots in a Si/SiGe heterostructure. New J Phys. 2010;12(11):113019. https://doi.org/10.1088/1367-2630/12/11/113019.

    Article 

    Google Scholar
     

  • Ramirez EB, Sfigakis F, Kudva S, Baugh J. Few-electrode design for silicon MOS quantum dots. Semicond Sci Technol. 2019;35(1):015002. https://doi.org/10.1088/1361-6641/ab516a.

    ADS 
    Article 

    Google Scholar
     

  • Buonacorsi B, Shaw B, Baugh J. Simulated coherent electron shuttling in silicon quantum dots. Phys Rev B. 2020;102:125406. https://doi.org/10.1103/PhysRevB.102.125406.

    ADS 
    Article 

    Google Scholar
     

  • Jirovec D, Hofmann A, Ballabio A, Mutter PM, Tavani G, Botifoll M, Crippa A, Kukucka J, Sagi O, Martins F et al.. A singlet-triplet hole spin qubit in planar ge. Nat Mater. 2021;20:1106–12.

    ADS 
    Article 

    Google Scholar
     

  • Chatzikyriakou E, Wang J, Mazzella L, Lacerda-Santos A, Figueira MCdS, Trellakis A, Birner S, Grange T, Bäuerle C, Waintal X. Unveiling the charge distribution of a GaAs-based nanoelectronic device: a large experimental data-set approach. 2022. https://arxiv.org/abs/2205.00846.

  • Hou H, Chung Y, Rughoobur G, Hsiao TK, Nasir A, Flewitt AJ, Griffiths JP, Farrer I, Ritchie DA, Ford CJB. Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices. J Phys D, Appl Phys. 2018;51(24):244004.

    ADS 
    Article 

    Google Scholar
     

  • Wang J. nextnanopy. 2021. https://github.com/nextnanopy Accessed 2021-08-03.

  • Datta S, Melloch MR, Bandyopadhyay S, Lundstrom MS. Proposed structure for large quantum interference effects. Appl Phys Lett. 1986;48(7):487–9. https://doi.org/10.1063/1.96484.

    ADS 
    Article 

    Google Scholar
     

  • Gaury B, Weston J, Santin M, Houzet M, Groth C, Waintal X. Numerical simulations of time-resolved quantum electronics. Phys Rep. 2014;534(1):1–37. https://doi.org/10.1016/j.physrep.2013.09.001.

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Gaury B, Weston J, Waintal X. Stopping electrons with radio-frequency pulses in the quantum Hall regime. Phys Rev B. 2014;90:161305. https://doi.org/10.1103/PhysRevB.90.161305.

    ADS 
    Article 

    Google Scholar
     

  • Maček M, Dumitrescu PT, Bertrand C, Triggs B, Parcollet O, Waintal X. Quantum quasi-Monte Carlo technique for many-body perturbative expansions. Phys Rev Lett. 2020;125:047702. https://doi.org/10.1103/PhysRevLett.125.047702.

    ADS 
    Article 

    Google Scholar
     

  • Lepeshov S, Gorodetsky A, Krasnok A, Rafailov E, Belov P. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev. 2017;11(1):1600199. https://doi.org/10.1002/lpor.201600199.

    ADS 
    Article 

    Google Scholar
     

  • Bashirpour M, Ghorbani S, Kolahdouz M, Neshat M, Masnadi-Shirazi M, Aghababa H. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure. RSC Adv. 2017;7:53010–7. https://doi.org/10.1039/C7RA11398F.

    ADS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)