• F Yu, T Takahashi, J Moriya, et al. Traditional Chinese medicine and Kampo: A review from the distant past for the future. Journal of International Medical Research, 2006, 34(3): 231-239.

    Article 

    Google Scholar
     

  • P Tang, K Wu, Z Fu, et al. Tutorials in suturing techniques for orthopedics. Springer Nature, 2021.

  • N Howard-Jones. A critical study of the origins and early development of hypodermic medication. Journal of the History of Medicine and Allied Sciences, 1947, 2(2): 201-249.

    Article 

    Google Scholar
     

  • C Ball, R Westhorpe. Intravenous equipment—the ongoing development of the syringe. Anaesthesia and Intensive Care, 2000, 28(2): 125.

    Article 

    Google Scholar
     

  • P C Khanna, T Ponsky, B Zagol, et al. Sonographic appearance of canal of Nuck hydrocele. Pediatric Radiology, 2007, 37(6): 603-606.

    Article 

    Google Scholar
     

  • X Zhang, L Y Xia, X Chen, et al. Hydrogel-based phototherapy for fighting cancer and bacterial infection. Science China Materials, 2017, 60(6): 487-503.

    Article 

    Google Scholar
     

  • M B Brown, G P Martin, S A Jones, et al. Dermal and transdermal drug delivery systems: current and future prospects. Drug Delivery, 2006, 13(3): 175-187.

    Article 

    Google Scholar
     

  • S Henry, D V McAllister, M G Allen, et al. Microfabricated microneedles: A novel approach to transdermal drug delivery. Journal of Pharmaceutical Sciences, 1998, 87(8): 922-925.

    Article 

    Google Scholar
     

  • K Yum, M F Yu, N Wang, et al. Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 2011, 1810(3): 330-338.

  • K Yum, N Wang, M F Yu. Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale, 2010, 2(3): 363-372.

    Article 

    Google Scholar
     

  • S Park, D V Nguyen, L Kang. Immobilized nanoneedle-like structures for intracellular delivery, biosensing and cellular surgery. Nanomedicine, 2020, 16(4): 335-349.

    Article 

    Google Scholar
     

  • T E McKnight, A V Melechko, G D Griffin, et al. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology, 2003, 14 (5): 551.

    Article 

    Google Scholar
     

  • G He, N Hu, AM Xu, et al. Nanoneedle platforms: The many ways to pierce the cell membrane. Advanced Functional Materials, 2020, 30(21): 1909890.

    Article 

    Google Scholar
     

  • R Elnathan, M Kwiat, F Patolsky, et al. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today, 2014, 9(2): 172-196.

    Article 

    Google Scholar
     

  • X Li, J Mo, J Fang, et al. Vertical nanowire array-based biosensors: device design strategies and biomedical applications. Journal of Materials Chemistry B, 2020, 8(34): 7609-7632.

    Article 

    Google Scholar
     

  • W Kim, J K Ng, M E Kunitake, et al. Interfacing silicon nanowires with mammalian cells. Journal of the American Chemical Society, 2007, 129(23): 7228-7229.

    Article 

    Google Scholar
     

  • A K Shalek, J T Robinson, E S Karp, et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences, 2010, 107(5): 1870-1875.

    Article 

    Google Scholar
     

  • S Park, Y S Kim, W B Kim, et al. Carbon nanosyringe array as a platform for intracellular delivery. Nano Letters, 2009, 9(4): 1325-1329.

    Article 

    Google Scholar
     

  • M Golshadi, L K Wright, I M Dickerson, et al. High-efficiency gene transfection of cells through carbon nanotube arrays. Small, 2016, 12(22): 3014-3020.

    Article 

    Google Scholar
     

  • M Golshadi, J Maita, D Lanza, et al. Effects of synthesis parameters on carbon nanotubes manufactured by template-based chemical vapor deposition. Carbon, 2014, 80: 28-39.

    Article 

    Google Scholar
     

  • H Persson, C Kobler, K Molhave, et al. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small, 2013, 9(23): 4006-4016, 3905.

  • G He, H J Chen, D Liu, et al. Fabrication of various structures of nanostraw arrays and their applications in gene delivery. Advanced Materials Interfaces, 2018, 5(10): 1701535.

    Article 

    Google Scholar
     

  • R Chen, Y C Li, J M Cai, et al. Atomic level deposition to extend Moore’s law and beyond. International Journal of Extreme Manufacturing, 2020, 2(2): 022002.

    Article 

    Google Scholar
     

  • R Wen, A H Zhang, D Liu, et al. Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Applied Materials & Interfaces, 2019, 11(47): 43936-43948.

    Article 

    Google Scholar
     

  • X G Fan, G C Li, C Q Cheng, et al, Progress in controlled fabrication techniques and applications of sillicon nanowires associated with metal assisted chemical etching, Chinese Journal of Applied Chemistry, 2013, 30(11): 1257-1264. (in Chinese)


    Google Scholar
     

  • Y H Huang, H C Lin, S L Cheng. Fabrication of vertically well-aligned NiSi2 nanoneedle arrays with enhanced field emission properties. Journal of Physics and Chemistry of Solids, 2021, 150: 109892.

    Article 

    Google Scholar
     

  • Z Huang, N Geyer, P Werner, et al. Metal-assisted chemical etching of silicon: a review. Advanced Materials, 2011, 23(2): 285-308.

    Article 

    Google Scholar
     

  • R H Yao, Z M Chen, Z H Wang, et al. The preparation of silicon nanowires using metal assisted chemical etching. Materials Review, 2013, 27(12): 1-6. (in Chinese)


    Google Scholar
     

  • C Chiappini, E D Rosa, J O Martinez, et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nature Materials, 2015, 14(5): 532-539.

    Article 

    Google Scholar
     

  • C Chiappini, P Campagnolo, C S Almeida, et al. Mapping local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles. Advanced Materials, 2015, 27(35): 5147-5152.

    Article 

    Google Scholar
     

  • C Chiappini, X Liu, J R Fakhoury, et al. Biodegradable porous silicon barcode nanowires with defined geometry. Advanced Functional Materials, 2010, 20(14): 2231-2239.

    Article 

    Google Scholar
     

  • P Wang, L Tong, Z W Zhou, et al. Progress in fabrication of silicon nanowires by metal-assisted chemical etching. Materials Reports, 2019, 33(5): 1466-1474. (in Chinese)


    Google Scholar
     

  • Y Wang, Y Yang, L Yan, et al. Poking cells for efficient vector-free intracellular delivery. Nature Communications, 2014, 5: 4466.

    Article 

    Google Scholar
     

  • H Seong, S G Higgins, J Penders, et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano, 2020, 14(5): 5371-5381.

    Article 

    Google Scholar
     

  • Z Wang, Y Yang, Z Xu, et al. Interrogation of cellular innate immunity by diamond-nanoneedle-assisted intracellular molecular fishing. Nano Letters, 2015, 15(10): 7058-7063.

    Article 

    Google Scholar
     

  • Y He, XC Che, L Que. A top-down fabrication process for vertical hollow silicon nanopillars. Journal of Microelectromechanical Systems, 2016, 25(4): 662-667.

    Article 

    Google Scholar
     

  • F D Angelis, M Malerba, M Patrini, et al. 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Letters, 2013, 13(8): 3553-3558.

    Article 

    Google Scholar
     

  • J A Huang, V Caprettini, Y Zhao, et al. On-demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Letters, 2019, 19 (2): 722-731.

    Article 

    Google Scholar
     

  • V Caprettini, A Cerea, G Melle, et al. Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Scientific Reports, 2017, 7(1): 8524.

    Article 

    Google Scholar
     

  • G C Messina, M Dipalo, R L Rocca, et al. Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes. Advanced Materials, 2015, 27(44): 7145-7149.

    Article 

    Google Scholar
     

  • Y Yang, M F Yuen, X Chen, et al. Fabrication of arrays of high-aspect-ratio diamond nanoneedles via maskless ECR-assisted microwave plasma etching. Cryst. Eng. Comm., 2015, 17(14): 2791-2800.

    Article 

    Google Scholar
     

  • W Li, Y Qiu, L Zhang, et al. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199. Biosensors and Bioelectronics, 2016, 79: 500-507.

    Article 

    Google Scholar
     

  • C Xie, Z Lin, L Hanson, et al. Intracellular recording of action potentials by nanopillar electroporation. Nature Nanotechnology, 2012, 7(3): 185-190.

    Article 

    Google Scholar
     

  • J T Robinson, M Jorgolli, A K Shalek, et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nature Nanotechnology, 2012, 7(3): 180-184.

    Article 

    Google Scholar
     

  • C Chiappini, J O Martinez, E D Rosa, et al. Biodegradable nanoneedles for localized delivery of nanoparticles in Vivo: Exploring the biointerface. ACS Nano, 2015, 9(5): 5500-5509.

    Article 

    Google Scholar
     

  • D Matsumoto, A Yamagishi, M Saito, et al. Mechanoporation of living cells for delivery of macromolecules using nanoneedle array. Journal of Bioscience and Bioengineering, 2016, 122(6): 748-752.

    Article 

    Google Scholar
     

  • C Chiappini, E D Rosa, J O Martinez, et al. Porous silicon nanoneedles by metal assisted chemical etch for intracellular sensing and delivery. ECS Transactions, 2015, 69(2): 63-68.

    Article 

    Google Scholar
     

  • M R Prausnitz. Engineering microneedle patches for vaccination and drug delivery to skin. Annual Review of Chemical & Biomolecular Engineering, 2017, 8: 177-200.

    Article 

    Google Scholar
     

  • G Ma, C Wu. Microneedle, bio-microneedle and bio-inspired microneedle: A review. Journal of Controlled Release, 2017, 251: 11-23.

    Article 

    Google Scholar
     

  • Y Li, H Zhang, R Yang, et al. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsystems & Nanoengineering, 2019, 5: 41.

    Article 

    Google Scholar
     

  • Y Li, H Zhang, R Yang, et al. In-plane silicon microneedles with open capillary microfluidic networks by deep reactive ion etching and sacrificial layer based sharpening. Sensors and Actuators A: Physical, 2019, 292: 149-157.

    Article 

    Google Scholar
     

  • A Caliò, P Dardano, V Di Palma, et al. Polymeric microneedles based enzymatic electrodes for electrochemical biosensing of glucose and lactic acid. Sensors and Actuators B: Chemical, 2016, 236: 343-349.

    Article 

    Google Scholar
     

  • P Dardano, A Calio, J Politi, et al. Optically monitored drug delivery patch based on porous silicon and polymer microneedles. Biomedical Optics Express, 2016, 7(5): 1645-1655.

    Article 

    Google Scholar
     

  • S Ma, Y Xia, Y Wang, et al. Fabrication and characterization of a tungsten microneedle array based on deep reactive ion etching technology. Journal of Vacuum Science & Technology B, 2016, 34(5): 052002.

    Article 

    Google Scholar
     

  • C O’Mahony. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomedical Microdevices, 2014, 16(3): 333-343.

    Article 

    Google Scholar
     

  • W Martanto, S P Davis, N R Holiday, et al. Transdermal delivery of insulin using microneedles in vivo. Pharmaceutical Research, 2004, 21(6): 947-952.

    Article 

    Google Scholar
     

  • W Zhou, W S Ling, W Liu, et al. Laser direct micromilling of copper-based bioelectrode with surface microstructure array. Optics and Lasers in Engineering, 2015, 73: 7-15.

    Article 

    Google Scholar
     

  • F Liu, Z Lin, Q Jin, et al. Protection of nanostructures-integrated microneedle biosensor using dissolvable polymer coating. ACS Applied Materials & Interfaces, 2019, 11(5): 4809-4819.

    Article 

    Google Scholar
     

  • Q Jin, H J Chen, X Li, et al. Reduced graphene oxide nanohybrid-assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing. Small, 2019, 15(6): e1804298.

    Article 

    Google Scholar
     

  • Y Sun, L Ren, L Jiang, et al. Fabrication of composite microneedle array electrode for temperature and bio-signal monitoring. Sensors, 2018, 18 (4): 1193.

    Article 

    Google Scholar
     

  • J Wang, S Yi, Z Yang, et al. Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting. ACS Applied Materials & Interfaces, 2020, 12(18): 21080-21087.

    Article 

    Google Scholar
     

  • W Zhou, S Liu, Y Li, et al. Mechanical properties of surface microstructures of metal dry bioelectrode. Sensors and Actuators A: Physical, 2018, 280: 170-178.

    Article 

    Google Scholar
     

  • E Larrañeta, R E M Lutton, A D Woolfson, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering: R: Reports, 2016, 104: 1-32.

    Article 

    Google Scholar
     

  • A Ablez, K Toyoda, K Miyamoto, et al. Microneedle structuring of Si(111) by irradiation with picosecond optical vortex pulses. Applied Physics Express, 2020, 13(6): 062006.

    Article 

    Google Scholar
     

  • K B Vinayakumar, P G Kulkarni, M M Nayak, et al. A hollow stainless steel microneedle array to deliver insulin to a diabetic rat. Journal of Micromechanics and Microengineering, 2016, 26(6): 065013.

    Article 

    Google Scholar
     

  • J Linas, T Titas, N Andrius, et al. Femtosecond laser-assisted etching: making arbitrary shaped 3D glass micro-structures. SPIE LASE, San Francisco, California, United States, 2018: 54.

  • M J Kim, S C Park, B Rizal, et al. Fabrication of circular obelisk-type multilayer microneedles using micro-milling and spray deposition. Frontiers in Bioengineering and Biotechnology, 2018, 6: 54.

    Article 

    Google Scholar
     

  • B Bediz, E Korkmaz, R Khilwani, et al. Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharmaceutical Research, 2014, 31(1): 117-135.

    Article 

    Google Scholar
     

  • E Garcia-Lopez, H R Siller, C A Rodriguez. Study of the fabrication of AISI 316L microneedle arrays. 46th Sme North American Manufacturing Research Conference, Namrc 46, 2018, 26: 117-124.

  • S Pigeon, M Meunier, M Sawan, et al. Design and fabrication of a microelectrode array dedicated for cortical electrical stimulation. CCECE 2003: Canadian Conference on Electrical and Computer Engineering, Vols 1-3, Proceedings, 2003: 813-816.

  • B Liu, Z L Yang, Y Zheng, et al. Fabrication of metal microneedle array electrode for bio-signals monitoring. Journal of Mechanical Engineering, 2021, 57(11): 61-68. (in Chinese)

    Article 

    Google Scholar
     

  • J Yang, Z Chen, R Ye, et al. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Delivery, 2018, 25(1): 1728-1739.

    Article 

    Google Scholar
     

  • Q L Wang, D D Zhu, X B Liu, et al. Microneedles with controlled bubble sizes and drug distributions for efficient transdermal drug delivery. Scientific Reports, 2016, 6: 38755.

    Article 

    Google Scholar
     

  • M Zhu, Y Liu, F Jiang, et al Combined silk fibroin microneedles for insulin delivery. ACS Biomaterials Science & Engineering, 2020, 6 (6): 3422-3429.

  • H Jun, M H Ahn, I J Choi, et al. Immediate separation of microneedle tips from base array during skin insertion for instantaneous drug delivery. RSC Advances, 2018, 8(32): 17786-17796.

    Article 

    Google Scholar
     

  • R He, Y Niu, Z Li, et al. A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Advanced Healthcare Materials, 2020, 9(4): e1901201.

    Article 

    Google Scholar
     

  • J Li, B Liu, Y Zhou, et al. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS One, 2017, 12(2): e0172043.

    Article 

    Google Scholar
     

  • J Li, Y Zhou, J Yang, et al. Fabrication of gradient porous microneedle array by modified hot embossing for transdermal drug delivery. Materials Science & Engineering C, 2019, 96: 576-582.

    Article 

    Google Scholar
     

  • S Lau, J Fei, H Liu, et al. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery. Journal of Controlled Release, 2017, 265: 113-119.

    Article 

    Google Scholar
     

  • X Ning, C Wiraja, D C S Lio, et al. A double-layered microneedle platform fabricated through frozen spray-coating. Advanced Healthcare Materials, 2020, 9(10): e2000147.

    Article 

    Google Scholar
     

  • Q L Wang, X P Zhang, B Z Chen, et al. Dissolvable layered microneedles with core-shell structures for transdermal drug delivery. Materials Science & Engineering C, 2018, 83: 143-147.

    Article 

    Google Scholar
     

  • R Ye, J Yang, Y Li, et al. Fabrication of tip-hollow and tip-dissolvable microneedle arrays for transdermal drug delivery. ACS Biomaterials Science & Engineering, 2020, 6(4): 2487-2494.

    Article 

    Google Scholar
     

  • H R Nejad, A Sadeqi, G Kiaee, et al. Low-cost and cleanroom-free fabrication of microneedles. Microsystems & Nanoengineering, 2018, 4: 17073.

    Article 

    Google Scholar
     

  • E M Cahill, S Keaveney, V Stuettgen, et al. Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery. Acta Biomaterialia, 2018, 80: 401-411.

    Article 

    Google Scholar
     

  • S Gholami, M M Mohebi, E Hajizadeh-Saffar, et al. Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery. International Journal of Pharmaceutics, 2019, 558: 299-310.

    Article 

    Google Scholar
     

  • K J Krieger, N Bertollo, M Dangol, et al. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsystems & Nanoengineering, 2019, 5: 42.

    Article 

    Google Scholar
     

  • K L Yung, Y Xu, C Kang, et al. Sharp tipped plastic hollow microneedle array by microinjection moulding. Journal of Micromechanics and Microengineering, 2012, 22(1): 015016.

    Article 

    Google Scholar
     

  • T N Tarbox, A B Watts, Z Cui, et al. An update on coating/manufacturing techniques of microneedles. Drug Delivery and Translational Research, 2018, 8(6): 1828-1843.

    Article 

    Google Scholar
     

  • G Yao, G Quan, S Lin, et al. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization. International Journal of Pharmaceutics, 2017, 534(1-2): 378-386.

    Article 

    Google Scholar
     

  • C P P Pere, S N Economidou, G Lall, et al. 3D printed microneedles for insulin skin delivery. International Journal of Pharmaceutics, 2018, 544(2): 425-432.

    Article 

    Google Scholar
     

  • M J Uddin, N Scoutaris, S N Economidou, et al. 3D printed microneedles for anticancer therapy of skin tumours. Materials Science & Engineering C, 2020, 107: 110248.

    Article 

    Google Scholar
     

  • S N Economidou, C P P Pere, A Reid, et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Materials Science and Engineering: C, 2019, 102: 743-755.

    Article 

    Google Scholar
     

  • Y Lu, S N Mantha, D C Crowder, et al. Microstereolithography and characterization of poly (propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication, 2015, 7(4): 045001.

    Article 

    Google Scholar
     

  • M A Luzuriaga, D R Berry, J C Reagan, et al. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab on a Chip, 2018, 18(8): 1223-1230.

    Article 

    Google Scholar
     

  • M Gieseke, V Senz, M Vehse, et al. Additive manufacturing of drug delivery systems. Biomedical Engineering / Biomedizinische Technik, 2012: 57.

  • SR Dabbagh, MR Sarabi, R Rahbarghazi, et al. 3D-printed microneedles in biomedical applications. iScience, 2021, 24(1): 102012.

  • K Moussi, A Bukhamsin, T Hidalgo, et al. Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Advanced Engineering Materials, 2019, 22(2): 1901358.

    Article 

    Google Scholar
     

  • D Han, R S Morde, S Mariani, et al. 4D printing of a bioinspired microneedle array with backward facing barbs for enhanced tissue adhesion. Advanced Functional Materials, 2020, 30(11): 1909197.

    Article 

    Google Scholar
     

  • H Yang, S Kim, G Kang, et al. Centrifugal lithography: self-shaping of polymer microstructures encapsulating biopharmaceutics by centrifuging polymer drops. Advanced Healthcare Materials, 2017: 1700326.

  • K Lee, HC Lee, DS Lee, et al. Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Advanced Materials, 2010, 22(4): 483-486.

    Article 

    Google Scholar
     

  • Z Chen, L Ren, J Li, et al. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomaterialia, 2018, 65: 283-291.

    Article 

    Google Scholar
     

  • F Ruggiero, R Vecchione, S Bhowmick, et al. Electro-drawn polymer microneedle arrays with controlled shape and dimension. Sensors and Actuators B: Chemical, 2018, 255: 1553-1560.

    Article 

    Google Scholar
     

  • L Ren, Q Jiang, K Chen, et al. Fabrication of a micro-needle array electrode by thermal drawing for bio-signals monitoring. Sensors, 2016, 16(6): 908.

    Article 

    Google Scholar
     

  • C G Li, C Y Lee, K Lee, et al. An optimized hollow microneedle for minimally invasive blood extraction. Biomedical Microdevices, 2013, 15(1): 17-25.

    Article 

    Google Scholar
     

  • Z Xiang, J Liu, C Lee. A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses. Microsystems & Nanoengineering, 2016, 2: 16012.

    Article 

    Google Scholar
     

  • S Yi, J Wang, Z Chen, et al. Cactus inspired conical spines with oriented microbarbs for efficient fog harvesting. Advanced Materials Technologies, 2019, 4(12): 1900727.

    Article 

    Google Scholar
     

  • J Ling, Z Song, J Wang, et al. Effect of honeybee stinger and its microstructured barbs on insertion and pull force. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68: 173-179.

    Article 

    Google Scholar
     

  • L Ren, B Liu, W Zhou, et al. A mini review of microneedle array electrode for bio-signal recording: a review. IEEE Sensors Journal, 2020, 20(2): 577-590.

    Article 

    Google Scholar
     

  • J Yu, J Wang, Y Zhang, et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4(5): 499-506.

    Article 

    Google Scholar
     

  • J Yu, C Qian, Y Zhang, et al. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Letters, 2017, 17(2): 733-739.

    Article 

    Google Scholar
     

  • A Abramson, E Caffarel-Salvador, V Soares, et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nature Medicine, 2019, 25(10): 1512-1518.

    Article 

    Google Scholar
     

  • L Ren, Q Jiang, Z Chen, et al. Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sensors and Actuators A: Physical, 2017, 268: 38-45.

    Article 

    Google Scholar
     

  • L Ren, S Xu, J Gao, et al. Fabrication of flexible microneedle array electrodes for wearable bio-signal recording. Sensors, 2018, 18(4): 1191.

    Article 

    Google Scholar
     

  • B U W Lei, T W Prow. A review of microsampling techniques and their social impact. Biomedical Microdevices, 2019, 21(4): 81.

    Article 

    Google Scholar
     

  • C Kolluru, M Williams, J Chae, et al. Recruitment and collection of dermal interstitial fluid using a microneedle patch. Advanced Healthcare Materials, 2019, 8(3): e1801262.

    Article 

    Google Scholar
     

  • P Shrestha, B Stoeber. Fluid absorption by skin tissue during intradermal injections through hollow microneedles. Scientific Reports, 2018, 8(1): 13749.

    Article 

    Google Scholar
     

  • T M Blicharz, P Gong, B M Bunner, et al. Microneedle-based device for the one-step painless collection of capillary blood samples. Nature Biomedical Engineering, 2018, 2(3): 151-157.

    Article 

    Google Scholar
     

  • L Liu, Y Wang, J Yao, et al. A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator. Biomedical Microdevices, 2016, 18(4): 59.

    Article 

    Google Scholar
     

  • F Ribet, G Stemme, N Roxhed. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomedical Microdevices, 2018, 20(4): 101.

    Article 

    Google Scholar
     

  • J Zhu, X Zhou, H J Kim, et al. Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid. Small, 2020, 16: e1905910.

    Article 

    Google Scholar
     

  • C G Li, M Dangol, C Y Lee, et al. A self-powered one-touch blood extraction system: a novel polymer-capped hollow microneedle integrated with a pre-vacuum actuator. Lab on a Chip, 2015, 15(2): 382-390.

    Article 

    Google Scholar
     

  • F Tasca, C Tortolini, P Bollella, et al. Microneedle-based electrochemical devices for transdermal biosensing: a review. Current Opinion in Electrochemistry, 2019, 16: 42-49.

    Article 

    Google Scholar
     

  • A M V Mohan, J R Windmiller, R K Mishra, et al. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosensors and Bioelectronics, 2017, 91: 574-579.

    Article 

    Google Scholar
     

  • H Teymourian, C Moonla, F Tehrani, et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. Analytical Chemistry, 2019, 92(2): 2291-2300.

    Article 

    Google Scholar
     

  • D A Sulaiman, J Y H Chang, N R Bennett, et al. Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano, 2019, 13(8): 9620-9628.

    Article 

    Google Scholar
     

  • Z Wang, J Luan, A Seth, et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nature Biomedical Engineering, 2021, 5(1): 64-76.

    Article 

    Google Scholar
     

  • Y Chen, B Z Chen, Q L Wang, et al. Fabrication of coated polymer microneedles for transdermal drug delivery. Journal of Controlled Release, 2017, 265: 14-21.

    Article 

    Google Scholar
     

  • A D Permana, A J Paredes, F Volpe-Zanutto, et al. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154: 50-61.

    Article 

    Google Scholar
     

  • J Yang, Y Li, R Ye, et al. Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery. Microsystems & Nanoengineering, 2020, 6: 112.

    Article 

    Google Scholar
     

  • Q Pagneux, R Ye, L Chengnan, et al. Electrothermal patches driving the transdermal delivery of insulin. Nanoscale Horizons, 2020, 5(4): 663-670.

    Article 

    Google Scholar
     

  • T T Liu, K Chen, Q Wang. Skin drug permeability and safety through a vibrating solid micro-needle system. Drug Delivery and Translational Research, 2018, 8(5): 1025-1033.

    Article 

    Google Scholar
     

  • Z Zheng, H Ye, J Wang, et al. Visible-light-controllable drug release from multilayer-coated microneedles. Journal of Materials Chemistry B, 2017, 5(34): 7014-7017.

    Article 

    Google Scholar
     

  • Y Li, J Yang, Y Zheng, et al. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery. Acta Biomaterialia, 2021, 121: 349-358.

    Article 

    Google Scholar
     

  • A C Steele, M J German, J Haas, et al. An in vitro investigation of the effect of bevel design on the penetration and withdrawal forces of dental needles. Journal of Dentistry, 2013, 41(2): 164-169.

    Article 

    Google Scholar
     

  • A N Siddiquee, Z A Khan, J S Tomar. Investigation and optimisation of machining parameters for micro-countersinking of AISI 420 stainless steel. International Journal of Machining and Machinability of Materials, 2013, 14(3): 230-256.

    Article 

    Google Scholar
     

  • S L Figueredo, W R Brugge, A H Slocum. Design of an endoscopic biopsy needle with flexural members. Journal of Medical Devices, 2007, 1(1): 62.

    Article 

    Google Scholar
     

  • X Wang, P Han, M Giovannini, et al. Modeling of machined depth in laser surface texturing of medical needles. Precision Engineering, 2017, 47: 10-18.

    Article 

    Google Scholar
     

  • J C Wang, L L Chen, L Q Ren, et al. Experimental research on drag reduction of bionic injector needles. Journal of Jilin University, 2008, 38: 379-382.


    Google Scholar
     

  • Y Wang, B L Tai, M Van Loon, et al. Grinding the sharp tip in thin NiTi and stainless steel wires. International Journal of Machine Tools and Manufacture, 2012, 62: 53-60.

    Article 

    Google Scholar
     

  • J Z Moore, Q Zhang, C S McGill, et al. Modeling of the plane needle cutting edge rake and inclination angles for biopsy. Journal of Manufacturing Science and Engineering, 2010, 132(5): 051005.

    Article 

    Google Scholar
     

  • M A Khalili, I Halvaei, S Ghazali, et al. Performing ICSI with commercial microinjection pipettes enhanced pregnancy rates. Turkish Journal of Medical Sciences, 2017, 47(3): 801-805.

    Article 

    Google Scholar
     

  • D Yaffe, M Koslow, H Haskiya, et al. A novel technique for CT-guided transthoracic biopsy of lung lesions: improved biopsy accuracy and safety. European Radiology, 2015, 25(11): 3354-3360.

    Article 

    Google Scholar
     

  • K Miyazaki, Y Hirasawa, M Aga, et al. Examination of endobronchial ultrasound-guided transbronchial needle aspiration using a puncture needle with a side trap. Scientific Reports, 2021, 11 (1): 1-8.

    Article 

    Google Scholar
     

  • K Kyoshima, S Kobayashi, K Wakui, et al. A newly designed puncture needle for suction decompression of giant aneurysms. Journal of Neurosurgery, 1992, 76(5): 880-882.

    Article 

    Google Scholar
     

  • H Gupta, T P Murphy, G M Soares. Use of a puncture needle for recanalization of an occluded right subclavian vein. Cardiovascular and Interventional Radiology, 1998, 21(6): 508-511.

    Article 

    Google Scholar
     

  • K M AlGhamdi, R A AlKhodair. Practical techniques to enhance the safety of health care workers in office-based surgery. Journal of Cutaneous Medicine and Surgery, 2011, 15(1): 48-54.

    Article 

    Google Scholar
     

  • C Simone, A M Okamura. Modeling of needle insertion forces for robot-assisted percutaneous therapy. Proceedings 2002 IEEE International Conference on Robotics and Automation, 2002, 2: 2085-2091.

  • J T Hing, A D Brooks, J P Desai. Reality-based estimation of needle and soft-tissue interaction for accurate haptic feedback in prostate brachytherapy simulation. Robotics Research, 2007: 34-48.

  • M U Farooq, B Xu, S Y Ko. A concentric tube-based 4-DOF puncturing needle with a novel miniaturized actuation system for vitrectomy. Biomedical Engineering Online, 2019, 18(1): 1-16.

    Article 

    Google Scholar
     

  • G K Tripp, K L Good, M J Motta, et al. The effect of needle gauge, needle type, and needle orientation on the volume of a drop. Veterinary Ophthalmology, 2016, 19(1): 38-42.

    Article 

    Google Scholar
     

  • J A V Loghem, D Humzah, M Kerscher. Cannula versus sharp needle for placement of soft tissue fillers: an observational cadaver study. Aesthetic Surgery Journal, 2018, 38(1): 73-88.


    Google Scholar
     

  • O A Shergold, N A Fleck. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. Journal of Biomechanical Engineering, 2005, 127(5): 838-848.

    Article 

    Google Scholar
     

  • H Tiriac, J C Bucobo, D Tzimas, et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment. Gastrointestinal Endoscopy, 2018, 87(6): 1474-1480.

    Article 

    Google Scholar
     

  • A Lathrop, R Smith, R Webster. Needle-membrane puncture mechanics. Needle Steering Workshop, MICCAI, 2008.

  • M Mahvash, P E Dupont. Mechanics of dynamic needle insertion into a biological material. IEEE Transactions on Biomedical Engineering, 2009, 57(4): 934-943.

    Article 

    Google Scholar
     

  • M Sharma. Transdermal and intravenous nano drug delivery systems: present and future. Applications of Targeted Nano Drugs and Delivery Systems, 2019: 499-550.

  • K C Wollert, H Drexler. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nature Reviews Cardiology, 2010, 7(4): 204.

    Article 

    Google Scholar
     

  • J Zhu, B Hu, C Xing, et al. Ultrasound-guided, minimally invasive, percutaneous needle puncture treatment for tennis elbow. Advances in Therapy, 2008, 25(10): 1031-1036.

    Article 

    Google Scholar
     

  • M Erdim, E Tezel, A Numanoglu, et al. The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2009, 62(9): 1210-1214.

    Article 

    Google Scholar
     

  • Y Hua, Y Wang, S C Wu. Clinical observation on acupoint injection for back pain in patients with primary osteoporosis. Journal of Acupuncture and Tuina Science, 2020, 18(5): 379-383.

    Article 

    Google Scholar
     

  • P Bao, J Mi, Z Yu, et al. Efficacy and safety of acupuncture combined with Chinese herbal medicine in the treatment of type 2 diabetes mellitus: A protocol for a systematic review and meta-analysis. Medicine, 2021, 100(43): e27658.

    Article 

    Google Scholar
     

  • Y Zheng, X Jiang, Y Gao, et al. Microbial profiles of patients with antipsychotic-related constipation treated with electroacupuncture. Frontiers in Medicine, 2021: 1821.

  • Y K Dai, Y Z Zhang, D Y Li, et al. The efficacy of Jianpi Yiqi therapy for chronic atrophic gastritis: A systematic review and meta-analysis. PloS One, 2017, 12(7): e0181906.

    Article 

    Google Scholar
     

  • J Zhu, J Li, L Yang, et al. Acupuncture, from the ancient to the current. The Anatomical Record, 2021, 304(11): 2365-2371.

    Article 

    Google Scholar
     

  • Y R Wang, J P Zhao, D F Hao. Is sham acupuncture a real placebo: skeptical for sham acupuncture. World Journal of Acupuncture-Moxibustion, 2017, 27(2): 1-5.

    Article 

    Google Scholar
     

  • J Q Fang, X M Shao. New trains of thoughts about acupuncture analgesia-acupuncture analgesia feb involve multi-dimensional regulation of pain. Acupuncture Research, 2017, 42(1): 85-89. (in Chinese)


    Google Scholar
     

  • A Pollmann. Eine Akupunkturnadel macht noch keine Akupunktur. Deutsche Zeitschrift für Akupunktur, 2021, 64(1): 51-54.

    MathSciNet 
    Article 

    Google Scholar
     

  • H Xiang, J Li, B Li, et al. Trends of acupuncture therapy on depression from 2011 to 2020: a bibliometric analysis. Frontiers in Psychology, 2021: 12.


    Google Scholar
     

  • Y Gao, L Liu, B Li, et al. Evaluation of the efficacy and safety of fire needle compared to filiform needle on knee osteoarthritis: study protocol for a randomized controlled trial. Trials, 2020, 21(1): 1-8.

    Article 

    Google Scholar
     

  • X Gao, S N Zhang. Clinical observation of filiform fire needling on moderate and severe pain in advanced cancer. Chinese Acupuncture & Moxibustion, 2020, 40 (6): 601-604.


    Google Scholar
     

  • M F Li, J M Lv, L F Zhao, et al. Different needling depth for benign prostatic hyperplasia: a randomized controlled trial. Chinese Acupuncture & Moxibustion, 2020, 40 (10): 1071-1075. (in Chinese)


    Google Scholar
     

  • Y Rao, F Hou, H Huang, et al. The combined treatment of entrapped Infrapatellar Branch of the Saphenous Nerve after ACL reconstruction: Ultrasound-guided perineural injection and acupotomy. Journal of Back and Musculoskeletal Rehabilitation, 2021: 1-5.

  • T Peng, X T Li, et al. Transcutaneous electrical nerve stimulation on acupoints relieves labor pain: a non-randomized controlled study. Chinese Journal of Integrative Medicine, 2010, 16(3): 234-238.

    Article 

    Google Scholar
     

  • L Lu, J Ye, J Xiong, et al. Effectiveness and safety of fire needle for knee osteoarthritis: A protocol of systematic review and meta-analysis. Medicine, 2021, 100(3): e23962.

    Article 

    Google Scholar
     

  • K Armstrong, R Gokal, A Chevalier, et al. Microcurrent point stimulation applied to lower back acupuncture points for the treatment of nonspecific neck pain. The Journal of Alternative and Complementary Medicine, 2017, 23(4): 295-299.

    Article 

    Google Scholar
     

  • J C Lin. Observation of the clinical efficacy of treating knee osteoarthritis with fire needle. Nanjing: Nanjing University of Chinese Medicine, 2011.


    Google Scholar
     

  • M S Macsai. Ophthalmic microsurgical suturing techniques. Berlin: Springer, 2007.

    Book 

    Google Scholar
     

  • K Dresing, M F Langer, T Slongo. Surgical needles in orthopedics and trauma surgery. Oper Orthop Traumatol, 2021, 33(5): 405-421.

    Article 

    Google Scholar
     

  • L Capek, E Jacquet, L Dzan, et al. The analysis of forces needed for the suturing of elliptical skin wounds. Medical & Biological Engineering & Computing, 2012, 50(2): 193-198.

    Article 

    Google Scholar
     

  • L Wei, B Xiong, Z Zhong. Study on energy dissipation of puncture process by using minimally invasive surgical suture needle. Journal of Mechanical Engineering, 2018, 54(7): 107-113.

    Article 

    Google Scholar
     

  • T Frick, D Marucci, J Cartmill, et al. Resistance forces acting on suture needles. Journal of Biomechanics, 2001, 34(10): 1335-1340.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading