• Moller-Madsen B (2015) Arthrogryposis multiplex congenita-an update. J Child Orthop 9:425–426

    Article 

    Google Scholar
     

  • Hall JG (2014) Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics, and general principles. Eur J Med Genet 57:464–472

    Article 

    Google Scholar
     

  • Dahan-Oliel N, Cachecho S, Barnes D, Bedard T, Davison AM, Dieterich K, Donohoe M et al (2019) International multidisciplinary collaboration toward an annotated definition of arthrogryposis multiplex congenita. American journal of medical genetics. Part C Sem Med Genet 181:288–299

    Article 

    Google Scholar
     

  • Xue S, Maluenda J, Marguet F, Shboul M, Quevarec L, Bonnard C, Ng AY et al (2017) Loss-of-function mutations in LGI4, a secreted ligand involved in schwann cell myelination, are responsible for Arthrogryposis Multiplex Congenita. Am J Human Genet 100:659–665

    Article 

    Google Scholar
     

  • Bamshad M, Van Heest AE, Pleasure D (2009) Arthrogryposis: a review and update. J Bone Joint Surgery Am 91:40–46

    Article 

    Google Scholar
     

  • Amberger JS, Bocchini CA, Scott AF, Hamosh A (2019) OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 47:D1038–D1043

    Article 

    Google Scholar
     

  • Reinstein E, Drasinover V, Lotan R, Gal-Tanamy M, Bolocan Nachman I, Eyal E, Jaber L et al (2018) Mutations in ERGIC1 cause Arthrogryposis multiplex congenita, neuropathic type. Clin Genet 93:160–163

    Article 

    Google Scholar
     

  • Baumann M, S.-G.E., Krabichler B, Petersen B-S, Weber U, Schmidt WM, Zschocke J, Müller T, Bittner RE, Janecke AR. (2017) Homozygous SYNE1 mutation causes congenital onset of muscular weakness with distal arthrogryposis: a genotype–phenotype correlation. Eur J Human Genet 25:262–266

    Article 

    Google Scholar
     

  • Seidahmed MZ, A.-K.A, Alsaif HS, Miqdad A, Alabbad N, Alfifi A, Abdelbasit OB, Alhussein K, Alsamadi A, Ibrahim N et al (2020) Recessive mutations in SCYL2 cause a novel syndromic form of arthrogryposis in humans. Human Genet 139:513–519

    Article 

    Google Scholar
     

  • Kimber E (2015) AMC: amyoplasia and distal arthrogryposis. J Child Orthop 9:427–432

    Article 

    Google Scholar
     

  • Desai D, Stiene D, Song T, Sadayappan S (2020) Distal arthrogryposis and lethal congenital contracture syndrome – an overview. Front Physiol 11:689

    Article 

    Google Scholar
     

  • Stevenson DA, Swoboda KJ, Sanders RK, Bamshad M (2006) A new distal arthrogryposis syndrome characterized by plantar flexion contractures. Am J Med Genet. 140:2797–2801

    Article 

    Google Scholar
     

  • Levine MS (1973) Congenital short tendo calcaneus. Report of a family. Am J Dis Children 125:858–859

    Article 

    Google Scholar
     

  • Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234–W241

    Article 

    Google Scholar
     

  • Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S, Bridge A et al (2012) Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods 9:345–350

    Article 

    Google Scholar
     

  • Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49:D605–D612

    Article 

    Google Scholar
     

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article 

    Google Scholar
     

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K et al (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13:2129–2141

    Article 

    Google Scholar
     

  • Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33:D428–D432

    Article 

    Google Scholar
     

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44:D457–D462

    Article 

    Google Scholar
     

  • Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R et al (2022) Database resources of the national center for biotechnology information. Nucleic Acids Res. 50:D20–D26

    Article 

    Google Scholar
     

  • Huret JL, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, Guignard JC et al (2013) Atlas of genetics and cytogenetics in oncology and haematology. Nucleic Acids Res. 41:D920–D924

    Article 

    Google Scholar
     

  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å et al (2015) Tissue-based map of the human proteome. Science 347:1260419

    Article 

    Google Scholar
     

  • Śliwinska M, Robaszkiewicz K, Wasąg P, Moraczewska J (2021) Mutations Q93H and E97K in TPM2 disrupt Ca-dependent regulation of actin filaments. Int J Mol Sci. 22:4036

    Article 

    Google Scholar
     

  • Chen Y, Wang X (2020) miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 48:D127–D131

    Article 

    Google Scholar
     

  • Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y et al (2020) miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 48:D148–D154


    Google Scholar
     

  • Chauveau C, Rowell J, Ferreiro A (2014) A rising titan: TTN review and mutation update. Human Mutation 35:1046–1059

    Article 

    Google Scholar
     

  • Thul PJ, Lindskog C (2018) The human protein atlas: A spatial map of the human proteome. Protein Sci. 27:233–244

    Article 

    Google Scholar
     

  • Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S et al (2002) Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Human Genet 71:492–500

    Article 

    Google Scholar
     

  • Evilä A, Vihola A, Sarparanta J, Raheem O, Palmio J, Sandell S, Eymard B et al (2014) Atypical phenotypes in titinopathies explained by second titin mutations. Ann Neurol 75:230–240

    Article 

    Google Scholar
     

  • Fernandez-Marmiesse A, Carrascosa-Romero MC, Alfaro Ponce B, Nascimento A, Ortez C, Romero N, Palacios L et al (2017) Homozygous truncating mutation in prenatally expressed skeletal isoform of TTN gene results in arthrogryposis multiplex congenita and myopathy without cardiac involvement. Neuromuscular Disord 27:188–192

    Article 

    Google Scholar
     

  • Chervinsky E, Khayat M, Soltsman S, Habiballa H, Elpeleg O, Shalev S (2018) A homozygous TTN gene variant associated with lethal congenital contracture syndrome. Am J Med Genet Part A 176:1001–1005

    Article 

    Google Scholar
     

  • Bryen SJ, Ewans LJ, Pinner J, MacLennan SC, Donkervoort S, Castro D, Töpf A et al (2020) Recurrent TTN metatranscript-only c.39974-11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy. Human Mutation 41:403–411

    Article 

    Google Scholar
     

  • Mroczek M, Kabzinska D, Chrzanowska KH, Pronicki M, Kochanski A (2017) A novel TPM2 gene splice-site mutation causes severe congenital myopathy with arthrogryposis and dysmorphic features. J Applied Genet 58:199–203

    Article 

    Google Scholar
     

  • Ekhilevitch N, Kurolap A, Oz-Levi D, Mory A, Hershkovitz T, Ast G, Mandel H et al (2016) Expanding the MYBPC1 phenotypic spectrum: a novel homozygous mutation causes arthrogryposis multiplex congenita. Clin Genet 90:84–89

    Article 

    Google Scholar
     

  • Chong JX, Talbot JC, Teets EM, Previs S, Martin BL, Shively KM, Marvin CT et al (2020) Mutations in MYLPF cause a novel segmental amyoplasia that manifests as Distal Arthrogryposis. Am J Human Genet 107:293–310

    Article 

    Google Scholar
     

  • Wang WB, Kong LC, Zuo RT, Kang QL (2020) Identification of a novel pathogenic mutation of the MYH3 gene in a family with distal arthrogryposis type 2B. Mole Med Rep 21:438–444


    Google Scholar
     

  • Sung SS, Brassington AM, Grannatt K, Rutherford A, Whitby FG, Krakowiak PA, Jorde LB et al (2003) Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am J Human Genet 72:681–690

    Article 

    Google Scholar
     

  • Robinson P, Lipscomb S, Preston LC, Altin E, Watkins H, Ashley CC, Redwood CS (2007) Mutations in fast skeletal troponin I, troponin T, and beta-tropomyosin that cause distal arthrogryposis all increase contractile function. FASEB J 21:896–905

    Article 

    Google Scholar
     

  • Veugelers M, Bressan M, McDermott DA, Weremowicz S, Morton CC, Mabry CC, Lefaivre JF et al (2004) Mutation of perinatal myosin heavy chain associated with a Carney complex variant. N Engl J Med 351:460–469

    Article 

    Google Scholar
     

  • Xiong Y, He L, Shay C, Lang L, Loveless J, Yu J, Chemmalakuzhy R et al (2019) Nck-associated protein 1 associates with HSP90 to drive metastasis in human non-small-cell lung cancer. J Exp Clin Cancer Res 38:122

    Article 

    Google Scholar
     

  • Zhong XP, Kan A, Ling YH, Lu LH, Mei J, Wei W, Li SH et al (2019) NCKAP1 improves patient outcome and inhibits cell growth by enhancing Rb1/p53 activation in hepatocellular carcinoma. Cell Death Dis 10:369

    Article 

    Google Scholar
     

  • Guo H, Zhang Q, Dai R, Yu B, Hoekzema K, Tan J, Tan S et al (2020) NCKAP1 Disruptive Variants Lead to a Neurodevelopmental Disorder with Core Features of Autism. Am J Human Gen 107:963–976

    Article 

    Google Scholar
     

  • Suzuki T, Nishiyama K, Yamamoto A, Inazawa J, Iwaki T, Yamada T, Kanazawa I et al (2000) Molecular cloning of a novel apoptosis-related gene, human Nap1 (NCKAP1), and its possible relation to Alzheimer disease. Genomics 63:246–254

    Article 

    Google Scholar
     

  • O’Doherty C, Roos IM, Antiguedad A, Aransay AM, Hillert J, Vandenbroeck K (2007) ITGA4 polymorphisms and susceptibility to multiple sclerosis. J Neuroimmunol 189:151–157

    Article 

    Google Scholar
     

  • Correia C, Coutinho AM, Almeida J, Lontro R, Lobo C, Miguel TS, Martins M et al (2009) Association of the alpha4 integrin subunit gene (ITGA4) with autism. American journal of medical genetics. Part B Neuropsychiatr Genet 150B:1147–1151

    Article 

    Google Scholar
     

  • Uhm KO, Lee JO, Lee YM, Lee ES, Kim HS, Park SH (2010) Aberrant DNA methylation of integrin alpha4: a potential novel role for metastasis of cholangiocarcinoma. J Cancer Res Clin Oncol 136:187–194

    Article 

    Google Scholar
     

  • Lacaria L, Lange JR, Goldmann WH, Rico F, Alonso JL (2020) αvβ3 integrin expression increases elasticity in human melanoma cells. Biochem Biophys Res Commun 525:836–840

    Article 

    Google Scholar
     

  • Ciardiello C, Leone A, Lanuti P, Roca MS, Moccia T, Minciacchi VR, Minopoli M et al (2019) Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J Exp Clin Cancer Res 38:317

    Article 

    Google Scholar
     

  • Jacq L, Garnier S, Dieudé P, Michou L, Pierlot C, Migliorini P, Balsa A et al (2007) The ITGAV rs3738919-C allele is associated with rheumatoid arthritis in the European Caucasian population: a family-based study. Arthritis Res Therapy 9:R63

    Article 

    Google Scholar
     

  • Rappaport N, Nativ N, Stelzer G, Twik M, Guan-Golan Y, Stein TI, Bahir I et al (2013, 2013) MalaCards: an integrated compendium for diseases and their annotation. Database (Oxford):bat018

  • Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI et al (2016) The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54:1.30.31-31.30.33

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading