• Abdusselam, M. S. (2014). Teachers’ and students’ views on using augmented reality environments in physics education: 11th grade magnetism topic example. Pegem Journal of Education & Instruction, 4(1), 59–74.


    Google Scholar
     

  • Alvarez, F. J., Parra, E. B., & Montes-Tubío, F. (2017). Incorporation of 3D ICT elements into class. Computer Applications in Engineering Education, 25(3), 542–549.

    Article 

    Google Scholar
     

  • Alvarez-Marin, A., & Velazquez-Iturbide, J. (2022). Augmented reality and engineering education: A systematic review. Transactions on Learning Technologies, 14(6), 817–831. https://doi.org/10.1109/TLT.2022.3144356.

    Article 

    Google Scholar
     

  • Andujar, J. M., Mejias, A., & Marquez, M. A. (2010). Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. IEEE Transactions on Education, 54(3), 492–500.

    Article 

    Google Scholar
     

  • Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385.

    Article 

    Google Scholar
     

  • Borrero, A. M., & Marquez, J. M. (2012). A pilot study of the effectiveness of augmented reality to enhance the use of remote labs in electrical engineering education. Journal of Science Education and Technology, 21(5), 540–557.

    Article 

    Google Scholar
     

  • Bressler, D. M., Bodzin, A. M., & Tutwiler, M. S. (2018). Engaging middle school students in scientific practice with a collaborative mobile game. Journal of Computer Assisted Learning, 35(2), 197–207.

    Article 

    Google Scholar
     

  • Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68(2013), 536–544.

    Article 

    Google Scholar
     

  • Cai, S., Wang, X., & Chiang, F.-K. (2014). A case study of Augmented Reality simulation system application in a chemistry course. Computers in Human Behavior, 37, 31–40.

    Article 

    Google Scholar
     

  • Castillo, R. I., Sanchez, V. G., & Villegas, O. O. (2015). A pilot study on the use of mobile augmented reality for interactive experimentation in quadratic equations. Mathematical Problems in Engineering, 2015, 1–13.

    Article 

    Google Scholar
     

  • Chang, Y. H. (2013). Applying an AR technique to enhance situated heritage learning in a ubiquitous learning environment. Turkish Online Journal of Educational Technology-TOJET, 12(3), 21–32.


    Google Scholar
     

  • Chen, C.-M., & Tsai, Y.-N. (2012). Interactive augmented reality system for enhancing library instruction in elementary schools. Computers & Education, 59(2), 638–652.

    Article 

    Google Scholar
     

  • Chen, C. H., Yang, C.-K., Huang, K., & Yao, K.-C. (2020). Augmented reality and competition in robotics education: Effects on 21st century competencies, group collaboration and learning motivation. Journal of Computer Assisted Learning, 36(6), 1052–1062.

    Article 

    Google Scholar
     

  • Chen, Y.-C., Chi, H.-L., Hung, W.-H., & Kang, S.-C. (2011). Use of tangible and augmented reality models in engineering graphics courses & practice. Journal of Professional Issues in Engineering Education, 137(4), 267–276.

    Article 

    Google Scholar
     

  • Cheng, K., & Tsai, C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449–462.

    Article 

    Google Scholar
     

  • Cheng, J., Wang, Y., Tjondronegoro, D., & Song, W. (2018). Construction of interactive teaching system for course of mechanical drawing based on mobile augmented reality technology. International Journal of Emerging Technologies in Learning, 13(2), 126–139. https://doi.org/10.3991/ijet.v13i02.7847.

    Article 

    Google Scholar
     

  • Chiang, T. H., Yang, S. J., & Hwang, G. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17(4), 352.


    Google Scholar
     

  • Contero, M., Gomis, J. M., Ferran, N., Albert, F., & Martin-Gutierrez, J. (2012). Development of an augmented reality based remedial course to improve the spatial ability of engineering students. In 2012 Frontiers in Education Conference Proceedings (pp. 1–5). Seattle, WA, USA: IEEE.

  • Cubillo, J., Martín, S., Castro, M., & Meier, R. (2012). Control of a remote laboratory by augmented reality. In Proceedings of IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. W2B-11). Hong Kong, China: IEEE.

  • Delello, J. A. (2014). Insights from pre-service teachers using science-based augmented reality. Journal of Computers in Education, 1(4), 295–311.

    Article 

    Google Scholar
     

  • Erbas, C., & Demirer, V. (2019). The effects of augmented reality on students’ academic achievement and motivation in a biology course. Journal of Computer Assisted Learning, 35(3), 450–458.

    Article 

    Google Scholar
     

  • Faridi, H., Tuli, N., & Mantri, A. (2020). Experience Fleming’s rule in electromagnetism using augmented reality: analyzing impact on students learning. Procedia Computer Science, 172, 660–668.

    Article 

    Google Scholar
     

  • Faridi, H., Tuli, N., Mantri, A., Singh, G., & Gargarish, S. (2021). A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in physics. Computer Applications in Engineering, 29(1), 229–243.

    Article 

    Google Scholar
     

  • Ferrer-Torregrosa, J., Torralba, J., Jimenez, M. A., Garcia, S., & Barcia, J. M. (2015). ARBOOK: Development and assessment of a tool based on augmented reality for anatomy. Journal of Science Education and Technology, 24(1), 119–124.

    Article 

    Google Scholar
     

  • Fraenkel, J. R., & Wallen, N. E. (2000). How to design and evaluate research in education. McGraw-hill.


    Google Scholar
     

  • Gargrish, S., Kaur, D. P., Mantri, A., & Singh, G. (2021). Measuring effectiveness of augmented reality-based geometry learning assistant on memory retention abilities of the students in 3D geometry. Computer Applications in Engineering Education. https://doi.org/10.1002/cae.22424

    Article 

    Google Scholar
     

  • Gutierr, J. M., Saorin, J. L., Contero, M., Alcaniz, M., Perez-Lopez, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77–91.

    Article 

    Google Scholar
     

  • Henderson, S. J., & Feiner, S. K. (2007). Augmented reality for maintenance and repair (armar). Columbia Univ New York Dept of Computer Science.

    Book 

    Google Scholar
     

  • Hung, Y. H., Chen, C. H., & Huang, S. W. (2016). Applying augmented reality to enhance learning: A study of different teaching materials. Journal of Computer Assisted Learning, 33(3), 252–266.

    Article 

    Google Scholar
     

  • Hwang, G.-J., Yang, L.-H., & Wang, S.-Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers & Education, 69, 121–130.

    Article 

    Google Scholar
     

  • Ibáñez, M. B., Serio, Á. D., Villarán, D., & Delgado-Kloos, C. (2016). The acceptance of learning augmented reality environments: A case study. In 16th International Conference on Advanced Learning Technologies (ICALT) (pp. 307–311). Austin, TX, USA: IEEE.

  • Ibanez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109–123.

    Article 

    Google Scholar
     

  • Ibili, E., & Sahin, S. (2015). Investigation of the effects on computer attitudes and computer self-efficacy to use of augmented reality in geometry teaching. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 9(1), 332–350.


    Google Scholar
     

  • Jones, K. O., Harland, J., Reid, J. M. V., & Bartlett, R. (2009). Relationship between examination questions and bloom’s taxonomy. In Proceedings – Frontiers in Education Conference, FIE. Doi: https://doi.org/10.1109/FIE.2009.5350598

  • Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, 27(3), 339–345.

    Article 

    Google Scholar
     

  • Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). ‘“Making it real”’: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3–4), 163–174.

    Article 

    Google Scholar
     

  • Kreijns, K., Acker, F. V., Vermeulen, M., & Buuren, H. (2013). What stimulates teachers to integrate ICT in their pedagogical practices? The use of digital learning materials in education. Computers in Human Behavior, 29(1), 217–225.

    Article 

    Google Scholar
     

  • Kucuk, S., Yilmaz, R. M., Baydas, O., & Goktas, Y. (2014). Augmented reality applications attitude scale in secondary schools: Validity and reliability study. Education and Science, 39(176), 383–392.


    Google Scholar
     

  • Kumar, A., Mantri, A., Singh, G., & Kaur, D. P. (2022). Impact of AR-based collaborative learning approach on knowledge gain of engineering students in embedded system course. Education and Information Technologies. https://doi.org/10.1007/s10639-021-10858-9

    Article 

    Google Scholar
     

  • Liaw, S. S., & Huang, H. M. (2013). Perceived satisfaction, perceived usefulness and interactive learning environments as predictors to self-regulation in e-learning environments. Computers and Education. https://doi.org/10.1016/j.compedu.2012.07.015

    Article 

    Google Scholar
     

  • Liu, T.-Y., Tan, T.-H., & Chu, Y.-L. (2007). 2D barcode and augmented reality supported English learning system. (pp. 5–10). In IEEE. 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007). Melbourne, Qld., Australia: IEEE.

  • Liu, Q., Yu, S., Chen, W., Wang, Q., & Xu, S. (2020). The effects of an augmented reality based magnetic experimental tool on students’ knowledge improvement and cognitive load. Journal of Computer Assisted Learning, 37(3), 645–656.

    Article 

    Google Scholar
     

  • Mahadzir, N. N., & Phung, L. F. (2013). The use of augmented reality pop-up book to increase motivation in English language learning for national primary school. Journal of Research & Method in Education, 1(1), 26–38.


    Google Scholar
     

  • Matcha, W., & Rambli, D. R. (2012). User preference in collaborative science learning through the use of augmented reality. In 4th International Congress on Engineering Education (pp. 64–68). Georgetown, Malaysia: IEEE.

  • Matcha, W., & Rambli, D. R. (2013). Exploratory study on collaborative interaction through the use of augmented reality in science learning. Procedia Computer Science, 25, 144–153.

    Article 

    Google Scholar
     

  • McMillan, J. H., & Schumacher, S. (2010). Research in education: Evidence-based inquiry, MyEducationLab series. Pearson.


    Google Scholar
     

  • Medicherla, P. S., Chang, G., & Morreale, P. (2010). Visualization for increased understanding and learning using augmented reality. In Proceedings of the international conference on Multimedia information. New York, NY, USA.

  • Milgram, P., & Kishino, A. F. (1994). Taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329.


    Google Scholar
     

  • Nesterov, A., Kholodilin, I., Shishkov, A., & Vanin, P. (2017). Augmented reality in engineering education: Opportunities and advantages. Communications – Scientific Letters of the University of Zilina, 19(4), 117–120.

    Article 

    Google Scholar
     

  • Patkar, R. S., Singh, S. P., & Birje, S. S. (2013). Marker based augmented reality using android OS. International Journal of Advanced Research in Computer Science and Software Engineering, 3(5), 64–69.


    Google Scholar
     

  • Perez-Lopez, D., & Contero, M. (2013). Delivering educational multimedia contents through an augmented reality application: A case study on its impact on knowledge acquisition and retention. Turkish Online Journal of Educational Technology-TOJET, 12(4), 19–28.


    Google Scholar
     

  • Sahin, D., & Yilmaz, R. M. (2020). The effect of augmented reality technology on middle school students’ achievements and attitudes towards science education. Computers & Education, 144, 103710. https://doi.org/10.1016/j.compedu.2019.103710.

    Article 

    Google Scholar
     

  • Shen, C. X., Liu, R. D., & Wang, D. (2013). Why are children attracted to the Internet? The role of need satisfaction perceived online and perceived in daily real life. Computers in Human Behavior, 29(1), 185–192.

    Article 

    Google Scholar
     

  • Shirazi, A., & Behzadan, A. H. (2014). Design and assessment of a mobile augmented reality-based information delivery tool for construction and civil engineering curriculum. Journal of Professional Issues in Engineering Education and Practice, 141(3), 04014012.

    Article 

    Google Scholar
     

  • Sin, A. K., & zaman, H. B. (2010). Live solar system (LSS): Evaluation of an augmented reality book-based educational tool In (Vol. 1, pp. 1–6). In IEEE. 2010 International Symposium on Information Technology (pp. 1–6). Kuala Lumpur, Malaysia: IEEE.

  • Singh, G., Tuli, N., & Mantri, A. (2021b). Issues and challenges in learning foundation linear algebra course with technology: A literature review. In International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 860–865). Greater Noida: IEEE.

  • Singh, G., Mantri, A., Sharma, O., & Kaur, R. (2021a). Virtual reality learning environment for enhancing electronics engineering laboratory experience. Computer Applications in Engineering Education, 29(1), 229–243.

    Article 

    Google Scholar
     

  • Somyurek, S. (2014). Gaining the attention of generation Z in learning process. Educational Technology Theory and Practice, 4(1), 63–80.


    Google Scholar
     

  • Su, C. H., & Cheng, C. H. (2014). A mobile gamification learning system for improving the learning motivation and achievements. Journal of Computer Assisted Learning, 31(3), 268–286.

    Article 

    Google Scholar
     

  • Tuli, N., Mantri, A., Sharma, S., SIngh, G., Gargrish, S., & Sharma, B. (2021). The learning approaches using Augmented Reality in learning environments: Meta-Analysis. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 871–875). Greater Noida: IEEE

  • Tuli, N., & Mantri, A. (2015). Augmented reality as teaching aid-making chemistry interactive. Journal of Engineering Education Transformations, 2015, 188–191.

    Article 

    Google Scholar
     

  • Tuli, N., & Mantri, A. (2020a). Evaluating usability of mobile-based augmented reality learning environments for early childhood. International Journal of Human-Computer Interaction, 37(9), 1–13.


    Google Scholar
     

  • Tuli, N., & Mantri, A. (2020b). Usability principles for augmented reality based Kindergarten applications. Procedia Computer Science, 172, 679–687.

    Article 

    Google Scholar
     

  • Vilkoniene, M. (2009). Influence of augmented reality technology upon pupils’ knowledge about human digestive system: The results of the experiment. US-China Education Review, 6(1), 36–43.


    Google Scholar
     

  • Walczak, K., Wojciechowski, R., & Cellary, W. (2006). Dynamic interactive VR network services. Dynamic interactive VR network services for education. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (pp. 277–286).

  • Wang, C.-H., & Chi, P.-H. (2012). Applying augmented reality in teaching fundamental earth science in junior high schools. In Computer Applications for Database, Education, and Ubiquitous Computing. EL 2012, DTA 2012. Communications in Computer and Information Science (Vol. 352, pp. 23–30). Berlin, Heidelberg: Springer.

  • Wang, M., Yuan, B., Kirschner, P. A., Kushniruk, A. W., & Peng, J. (2018). Reflective learning with complex problems in a visualization-based learning environment with expert support. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2018.01.025

    Article 

    Google Scholar
     

  • Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68, 570–585.

    Article 

    Google Scholar
     

  • Wu, H.-K., Lee, S. W., Chang, H., & Liang, J. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62(2013), 41–49.

    Article 

    Google Scholar
     

  • Xia, X. (2021). Sparse learning strategy and key feature selection in interactive learning environment. Interactive Learning Environments. https://doi.org/10.1080/10494820.2021.1998913

    Article 

    Google Scholar
     

  • Yildirim, S. (2016). The effect of augmented reality applications in Science courses on students’ achievement, motivation, perception towards problem solving skills and attitudes. Ankara University Institute of Educational Sciences.


    Google Scholar
     

  • Yilmaz, R. M., & Goktas, Y. (2017). Using augmented reality technology in storytelling activities: Examining elementary students’ narrative skill and creativity. Virtual Reality, 21(2), 75–89.

    Article 

    Google Scholar
     

  • Yuen, S. C., Yaoyuneyong, G., & Johnson, E. (2011). Augmented Reality: An overview and five directions for AR in education. Journal of Educational Technology Development and Exchange (JETDE), 4(1), 11.


    Google Scholar
     

  • Zhang, J., Sung, Y.-T., Hou, H.-T., & Chang, K.-E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & Education, 73, 178–188.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)

    Loading